From 01c89028170524c66c8a9b408de4611e0d5a619e Mon Sep 17 00:00:00 2001 From: Laurent Mercadier <laurent.mercadier@xfel.eu> Date: Fri, 28 Feb 2025 10:50:03 +0100 Subject: [PATCH] improve calibrate() and fix issue with get_camera_params() --- src/toolbox_scs/detectors/viking.py | 51 ++++++++++++++++++++++------- 1 file changed, 39 insertions(+), 12 deletions(-) diff --git a/src/toolbox_scs/detectors/viking.py b/src/toolbox_scs/detectors/viking.py index 9b7124c..0eb3ab4 100644 --- a/src/toolbox_scs/detectors/viking.py +++ b/src/toolbox_scs/detectors/viking.py @@ -138,7 +138,7 @@ class Viking: 'use_dark', 'bl_poly_deg', 'bl_signal_range', 'fields') return {param: getattr(self, param.upper()) for param in params} - def from_run(self, runNB, add_attrs=True): + def from_run(self, runNB, add_attrs=True, tid_offset=-1): """load a run Load the run `runNB`. A thin wrapper around `toolbox_scs.load`. @@ -150,6 +150,8 @@ class Viking: add_attrs: bool if True, adds the camera parameters as attributes to the dataset (see get_camera_params()) + tid_offset: int + train Id offset of Newton camera Output ------ @@ -165,11 +167,20 @@ class Viking: data2 = v.from_run(155) # load run 155 data = xarray.concat([data1, data2], 'trainId') # combine both """ + #separately load newton image and deal with trainId mismatch roi = {'newton': {'newton': {'roi': (self.Y_RANGE, self.X_RANGE), 'dim': ['newt_y', 'newt_x']}}} - run, data = tb.load(self.PROPOSAL, runNB, - fields=self.FIELDS, rois=roi) - data['newton'] = data['newton'].astype(float) + run, newton = tb.load(self.PROPOSAL, runNB, 'newton', rois=roi) + newton = newton.shift(trainId=tid_offset).astype(float) + + #load the rest + fields = [f for f in self.FIELDS if f != 'newton'] + if len(fields) == 0: + data = newton + else: + run, data = tb.load(self.PROPOSAL, runNB, + fields=fields) + data = data.merge(newton, join='inner') data = data.assign_coords(newt_x=np.polyval(self.ENERGY_CALIB, data['newt_x'])) if add_attrs: @@ -259,13 +270,19 @@ class Viking: 'endX': 'imageSpecifications.endX.value', 'startY': 'imageSpecifications.startY.value', 'endY': 'imageSpecifications.endY.value', - 'temperature': 'CoolerActual.temperature.value', + 'temperature': 'coolerActual.temperature.value', 'high_capacity': 'HighCapacity.value', 'exposure_s': 'exposureTime.value' } ret = {} - for k, v in dic.items(): - ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v) + try: + for k, v in dic.items(): + ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v) + except Exception as e: + print(e) + dic['temperature'] = 'CoolerActual.temperature.value' + for k, v in dic.items(): + ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v) ret['gain'] = self.get_camera_gain(run) ret['photoelectrons_per_count'] = self.e_per_counts(run, ret['gain']) return ret @@ -380,7 +397,7 @@ class Viking: return ds - def calibrate(self, runList, plot=True): + def calibrate(self, runList, source='nrj', order=2, xrange=slice(None,None), plot=True): """ This routine determines the calibration coefficients to translate the camera pixels into energy in eV. The Viking spectrometer is calibrated @@ -402,6 +419,7 @@ class Viking: energy_calib: np.array the calibration coefficients (2nd degree polynomial) """ + old_calib = self.ENERGY_CALIB self.ENERGY_CALIB = [0, 1, 0] x_pos = [] nrj = [] @@ -411,11 +429,16 @@ class Viking: for i, runNB in enumerate(runList): if plot: print(runNB) + xrange0 = self.X_RANGE + self.X_RANGE=xrange ds = self.from_run(runNB) self.integrate(ds) - avg_spectrum = ds['spectrum'].mean(dim='trainId') + ds = self.removePolyBaseline(ds) + avg_spectrum = ds['spectrum_nobl'].mean(dim='trainId') p0 = [np.max(avg_spectrum)-np.min(avg_spectrum), - avg_spectrum.argmax().values, 10, np.min(avg_spectrum)] + avg_spectrum['newt_x'][avg_spectrum.argmax()].values, + 10, np.min(avg_spectrum)] + eV_unit = 1e3 if 'UND' in source else 1 try: popt, pcov = curve_fit(gauss1d, avg_spectrum['newt_x'].values, avg_spectrum.values, p0=p0) @@ -423,17 +446,21 @@ class Viking: gaussian_fits.append(popt) spectra.append(avg_spectrum) runNBs.append(runNB) - nrj.append(tb.load_run_values(self.PROPOSAL, runNB)['nrj']) + nrj.append(tb.load_run_values(self.PROPOSAL, runNB)[source]*eV_unit) except Exception as e: print(f'error with run {runNB}:', e) + self.ENERGY_CALIB = old_calib + finally: + self.X_RANGE = xrange0 x_pos = np.array(x_pos) nrj = np.array(nrj) idx = np.argsort(x_pos) x_pos = x_pos[idx] nrj = nrj[idx] - energy_calib = np.polyfit(x_pos, nrj, 2) + energy_calib = np.polyfit(x_pos, nrj, order) if plot: plot_viking_calibration(spectra, x_pos, nrj, energy_calib, gaussian_fits, runNBs) self.ENERGY_CALIB = energy_calib + self.GAUSSIAN_FITS = gaussian_fits return energy_calib -- GitLab