From 01c89028170524c66c8a9b408de4611e0d5a619e Mon Sep 17 00:00:00 2001
From: Laurent Mercadier <laurent.mercadier@xfel.eu>
Date: Fri, 28 Feb 2025 10:50:03 +0100
Subject: [PATCH] improve calibrate() and fix issue with get_camera_params()

---
 src/toolbox_scs/detectors/viking.py | 51 ++++++++++++++++++++++-------
 1 file changed, 39 insertions(+), 12 deletions(-)

diff --git a/src/toolbox_scs/detectors/viking.py b/src/toolbox_scs/detectors/viking.py
index 9b7124c..0eb3ab4 100644
--- a/src/toolbox_scs/detectors/viking.py
+++ b/src/toolbox_scs/detectors/viking.py
@@ -138,7 +138,7 @@ class Viking:
                       'use_dark', 'bl_poly_deg', 'bl_signal_range', 'fields')
         return {param: getattr(self, param.upper()) for param in params}
 
-    def from_run(self, runNB, add_attrs=True):
+    def from_run(self, runNB, add_attrs=True, tid_offset=-1):
         """load a run
 
         Load the run `runNB`. A thin wrapper around `toolbox_scs.load`.
@@ -150,6 +150,8 @@ class Viking:
         add_attrs: bool
             if True, adds the camera parameters as attributes to the dataset
             (see get_camera_params())
+        tid_offset: int
+            train Id offset of Newton camera
 
         Output
         ------
@@ -165,11 +167,20 @@ class Viking:
             data2 = v.from_run(155)  # load run 155
             data = xarray.concat([data1, data2], 'trainId')  # combine both
         """
+        #separately load newton image and deal with trainId mismatch
         roi = {'newton': {'newton': {'roi': (self.Y_RANGE, self.X_RANGE),
                                      'dim': ['newt_y', 'newt_x']}}}
-        run, data = tb.load(self.PROPOSAL, runNB,
-                            fields=self.FIELDS, rois=roi)
-        data['newton'] = data['newton'].astype(float)
+        run, newton = tb.load(self.PROPOSAL, runNB, 'newton', rois=roi)
+        newton = newton.shift(trainId=tid_offset).astype(float)
+        
+        #load the rest
+        fields = [f for f in self.FIELDS if f != 'newton']
+        if len(fields) == 0:
+            data = newton
+        else:
+            run, data = tb.load(self.PROPOSAL, runNB,
+                                fields=fields)
+            data = data.merge(newton, join='inner')
         data = data.assign_coords(newt_x=np.polyval(self.ENERGY_CALIB,
                                                     data['newt_x']))
         if add_attrs:
@@ -259,13 +270,19 @@ class Viking:
                'endX': 'imageSpecifications.endX.value',
                'startY': 'imageSpecifications.startY.value',
                'endY': 'imageSpecifications.endY.value',
-               'temperature': 'CoolerActual.temperature.value',
+               'temperature': 'coolerActual.temperature.value',
                'high_capacity': 'HighCapacity.value',
                'exposure_s': 'exposureTime.value'
                }
         ret = {}
-        for k, v in dic.items():
-            ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v)
+        try:
+            for k, v in dic.items():
+                ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v)
+        except Exception as e:
+            print(e)
+            dic['temperature'] = 'CoolerActual.temperature.value'
+            for k, v in dic.items():
+                ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v)
         ret['gain'] = self.get_camera_gain(run)
         ret['photoelectrons_per_count'] = self.e_per_counts(run, ret['gain'])
         return ret
@@ -380,7 +397,7 @@ class Viking:
         return ds
 
 
-    def calibrate(self, runList, plot=True):
+    def calibrate(self, runList, source='nrj', order=2, xrange=slice(None,None), plot=True):
         """
         This routine determines the calibration coefficients to translate the
         camera pixels into energy in eV. The Viking spectrometer is calibrated
@@ -402,6 +419,7 @@ class Viking:
         energy_calib: np.array
             the calibration coefficients (2nd degree polynomial)
         """
+        old_calib = self.ENERGY_CALIB
         self.ENERGY_CALIB = [0, 1, 0]
         x_pos = []
         nrj = []
@@ -411,11 +429,16 @@ class Viking:
         for i, runNB in enumerate(runList):
             if plot:
                 print(runNB)
+            xrange0 = self.X_RANGE
+            self.X_RANGE=xrange
             ds = self.from_run(runNB)
             self.integrate(ds)
-            avg_spectrum = ds['spectrum'].mean(dim='trainId')
+            ds = self.removePolyBaseline(ds)
+            avg_spectrum = ds['spectrum_nobl'].mean(dim='trainId')
             p0 = [np.max(avg_spectrum)-np.min(avg_spectrum),
-                  avg_spectrum.argmax().values, 10, np.min(avg_spectrum)]
+                  avg_spectrum['newt_x'][avg_spectrum.argmax()].values,
+                  10, np.min(avg_spectrum)]
+            eV_unit = 1e3 if 'UND' in source else 1
             try:
                 popt, pcov = curve_fit(gauss1d, avg_spectrum['newt_x'].values,
                                        avg_spectrum.values, p0=p0)
@@ -423,17 +446,21 @@ class Viking:
                 gaussian_fits.append(popt)
                 spectra.append(avg_spectrum)
                 runNBs.append(runNB)
-                nrj.append(tb.load_run_values(self.PROPOSAL, runNB)['nrj'])
+                nrj.append(tb.load_run_values(self.PROPOSAL, runNB)[source]*eV_unit)
             except Exception as e:
                 print(f'error with run {runNB}:', e)
+                self.ENERGY_CALIB = old_calib
+            finally:
+                self.X_RANGE = xrange0
         x_pos = np.array(x_pos)
         nrj = np.array(nrj)
         idx = np.argsort(x_pos)
         x_pos = x_pos[idx]
         nrj = nrj[idx]
-        energy_calib = np.polyfit(x_pos, nrj, 2)
+        energy_calib = np.polyfit(x_pos, nrj, order)
         if plot:
             plot_viking_calibration(spectra, x_pos, nrj, energy_calib,
                                     gaussian_fits, runNBs)
         self.ENERGY_CALIB = energy_calib
+        self.GAUSSIAN_FITS = gaussian_fits
         return energy_calib
-- 
GitLab