diff --git a/src/toolbox_scs/detectors/__init__.py b/src/toolbox_scs/detectors/__init__.py
index 5059545ee600c791fa6147d42424b2f7dfeb88ef..ae6fe76891c9c85d77151e856ba3310e08b01289 100644
--- a/src/toolbox_scs/detectors/__init__.py
+++ b/src/toolbox_scs/detectors/__init__.py
@@ -11,7 +11,7 @@ from .dssc_processing import (
     bin_data)
 from .dssc import (
     DSSCBinner, DSSCFormatter, DSSCAnalyzer)
-from .azimuthal_integrator import AzimuthalIntegrator
+from .azimuthal_integrator import AzimuthalIntegrator, AzimuthalIntegratorDSSC
 
 __all__ = (
     # Functions
@@ -35,6 +35,7 @@ __all__ = (
     "DSSCFormatter",
     "DSSCAnalyzer",
     "AzimuthalIntegrator",
+    "AzimuthalIntegratorDSSC",
     # Variables
 )
 
diff --git a/src/toolbox_scs/detectors/azimuthal_integrator.py b/src/toolbox_scs/detectors/azimuthal_integrator.py
index fb56490c1e6b8256976bc725e46b7626d2853bdf..dd50c7079c97d13eda6ee7f256a85b344f6316e0 100644
--- a/src/toolbox_scs/detectors/azimuthal_integrator.py
+++ b/src/toolbox_scs/detectors/azimuthal_integrator.py
@@ -78,6 +78,103 @@ class AzimuthalIntegrator(object):
     
     def __call__(self, image):
         assert self.shape == image.shape, 'image shape does not match'
-        image_flat = image.flatten()
+        image_flat = np.ravel(image)
         return np.array([np.nansum(image_flat[indices]) \
                          for indices in self.flat_indices])
+
+    
+class AzimuthalIntegratorDSSC(object):
+    def __init__(self, geom, polar_range, nrings=100, dxdy=(0, 0)):
+        '''
+        Create a reusable integrator for repeated azimuthal integration of 
+        similar images. Calculates array indices for a given parameter set that 
+        allows fast recalculation. Directly uses a extra_geom.detectors.DSSC_1MGeometry
+        instance for correct pixel positions
+        
+        Parameters
+        ==========
+        geom : extra_geom.detectors.DSSC_1MGeometry
+            loaded geometry instance
+        
+        polar_range : tuple of ints
+            start and stop polar angle (in degrees) to restrict integration to 
+            wedges
+        
+        nrings : int, default 100
+            number of rings to integrate over
+        
+        dxdy : tuple of floats, default (0, 0)
+            global coordinate shift to adjust center outside of geom object
+        
+        Returns
+        =======
+        ai : azimuthal_integrator instance
+            Instance can directly be called with image data:
+            > az_intensity = ai(image)
+            radial distances and the polar mask are accessible as attributes:
+            > ai.distance
+            > ai.polar_mask
+        '''
+        pos = geom.get_pixel_positions()
+        self.shape = pos.shape[:-1]
+        xcoord, ycoord = pos[..., 0] + dxdy[0], pos[..., 1] + dxdy[1]
+
+        # distance from center
+        dist_array = np.hypot(xcoord, ycoord)
+
+        # array of polar angles
+        if np.abs(polar_range[1] - polar_range[0]) > 180:
+            raise ValueError('Integration angle too wide, should be within 180' 
+                             ' degrees')
+
+        if np.abs(polar_range[1] - polar_range[0]) < 1e-6:
+            raise ValueError('Integration angle too narrow')
+    
+        if np.abs(polar_range[1] - polar_range[0]) == 180:
+            self.polar_mask = np.ones_like(pos)
+        else:
+            tmin, tmax = np.deg2rad(np.sort(polar_range)) % np.pi
+            polar_array = np.arctan2(xcoord, ycoord)
+            polar_array = np.mod(polar_array, np.pi)
+            self.polar_mask = (polar_array > tmin) * (polar_array < tmax)
+        
+        maxdist = np.abs(dist_array).max()
+        dr = maxdist / nrings
+
+        im, ix, iy = np.indices(dimensions=self.shape)
+        self.index_array = np.ravel_multi_index((im, ix, iy), self.shape)
+
+        self.distance = []
+        self.flat_indices = []
+        for dist in np.arange(dr, maxdist, dr):
+            ring_mask = (
+                self.polar_mask
+                * (dist_array >= (dist - dr))
+                * (dist_array < dist)
+            )
+            self.flat_indices.append(self.index_array[ring_mask])
+            self.distance.append(dist)
+        self.distance = np.array(self.distance)
+    
+    def calc_q(self, distance, wavelength):
+        '''Calculate momentum transfer coordinate.
+        
+        Parameters
+        ==========
+        distance : float
+            Sample - detector distance in meter
+        wavelength : float
+            wavelength of scattered light in meters
+        
+        Returns
+        =======
+        deltaq : np.ndarray
+            Momentum transfer coordinate for azimuthal integration
+        '''
+        return 4 * np.pi * np.sin(np.arctan(self.distance / distance)) / wavelength
+    
+    def __call__(self, image):
+        assert self.shape == image.shape, 'image shape does not match'
+        image_flat = np.ravel(image)
+        return np.array([np.nansum(image_flat[indices])
+                         for indices in self.flat_indices])
\ No newline at end of file
diff --git a/src/toolbox_scs/detectors/dssc_misc.py b/src/toolbox_scs/detectors/dssc_misc.py
index 5f9a2f68f253dd37ce56d845f0880579ce394819..d7a22021c00c961292bb952e1e8cb47ae0dfea69 100644
--- a/src/toolbox_scs/detectors/dssc_misc.py
+++ b/src/toolbox_scs/detectors/dssc_misc.py
@@ -178,7 +178,7 @@ def load_geom(geopath=None, quad_pos=None):
     return geom
 
 
-def quickmask_DSSC_ASIC(geom, poslist):
+def quickmask_DSSC_ASIC(poslist):
     '''
     Returns a mask for the given DSSC geometry with ASICs given in poslist
     blanked. poslist is a list of (module, row, column) tuples. Each module
@@ -192,7 +192,7 @@ def quickmask_DSSC_ASIC(geom, poslist):
     for (module, row, col) in poslist:
         mask[module, 64 * row:64 * (row + 1), 64 * col:64 * (col + 1)] = \
             np.nan
-    return geom.position_modules_fast(mask)[0]
+    return mask
 
 
 def load_mask(fname, dssc_mask):