diff --git a/xgm.py b/xgm.py index 42104c04de812cded7102ec3584fd90576604cf0..5f8b0d12fc98b18d8d57197afd411bcd6d9042a8 100644 --- a/xgm.py +++ b/xgm.py @@ -392,8 +392,9 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=1, t_offset=None, n bkgstart: trace index of background start bkgstop: trace index of background stop mcp: MCP channel number - t_offset: index separation between two pulses. If None, checks the - pulse pattern and determine the t_offset assuming mininum pulse + t_offset: index separation between two pulses. Needed if bunch + pattern info is not available. If None, checks the pulse + pattern and determine the t_offset assuming mininum pulse separation of 220 ns and digitizer resolution of 2 GHz. npulses: number of pulses. If None, takes the maximum number of pulses according to the bunch patter (field 'npulses_sase3') @@ -407,8 +408,8 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=1, t_offset=None, n raise ValueError("Source not found: {}!".format(keyraw)) if npulses is None: npulses = int(data['npulses_sase3'].max().values) - sa3 = data['sase3'].where(data['sase3']>1) if t_offset is None: + sa3 = data['sase3'].where(data['sase3']>1) if npulses > 1: #Calculate the number of pulses between two lasing pulses (step) step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values @@ -417,7 +418,7 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=1, t_offset=None, n t_offset = 440 * step else: t_offset = 1 - results = xr.DataArray(np.empty((sa3.shape[0], npulses)), coords=sa3.coords, + results = xr.DataArray(np.empty((data.trainId.shape[0], npulses)), coords=data[keyraw].coords, dims=['trainId', 'MCP{}fromRaw'.format(mcp)]) for i in range(npulses): a = intstart + t_offset*i @@ -430,11 +431,15 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=1, t_offset=None, n def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None, - bkgstart=None, bkgstop=None, t_offset=None, npulses=None): + bkgstart=None, bkgstop=None, t_offset=None, npulses=None, + stride=1): ''' Extract peak-integrated data from TIM where pulses are from SASE3 only. If use_apd is False it calculates integration from raw traces. The missing values, in case of change of number of pulses, are filled with NaNs. + If no bunch pattern info is available, the function assumes that + SASE 3 comes first and that the number of pulses is fixed in both + SASE 1 and 3. Inputs: data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw') @@ -444,12 +449,25 @@ def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None, bkgstop: trace index of background stop t_offset: index separation between two pulses mcp: MCP channel number - npulses: number of pulses to compute - + npulses: int, optional. Number of pulses to compute. Needed if + no bunch pattern info is available. + stride: int, optional. Used to select pulses in the APD array if + no bunch pattern info is available. Output: tim: DataArray of shape trainId only for SASE3 pulses x N with N=max(number of pulses per train) ''' + if 'sase3' not in data: + print('Missing bunch pattern info!\n' + +'Retrieving {} SASE 3 pulses assuming that '.format(npulses) + +'SASE 3 pulses come first.') + if use_apd: + tim = data['MCP{}apd'.format(mcp)][:,:npulses:stride] + else: + tim = mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=mcp, + t_offset=t_offset, npulses=npulses) + return tim + sa3 = data['sase3'].where(data['sase3']>1, drop=True) npulses_sa3 = data['npulses_sase3'] maxpulses = int(npulses_sa3.max().values)