diff --git a/doc/BOZ analysis part II.1 Small data.ipynb b/doc/BOZ analysis part II.1 Small data.ipynb index d0ea8a274321cc71814342a5fea2faa49d7705ac..157d1f292514cd2fa6c06fa06089a5855bb4e9ef 100644 --- a/doc/BOZ analysis part II.1 Small data.ipynb +++ b/doc/BOZ analysis part II.1 Small data.ipynb @@ -23,7 +23,6 @@ "import dask\n", "print(f'dask: {dask.__version__}')\n", "\n", - "import netCDF4\n", "import xarray as xr\n", "\n", "from psutil import virtual_memory\n", diff --git a/doc/BOZ analysis part II.2 Binning.ipynb b/doc/BOZ analysis part II.2 Binning.ipynb index 19044e5fa092cc590bd536fd3eba13143e6fa0ef..0801e0524fb3769eebaf85d518e854e78aa2b7f3 100644 --- a/doc/BOZ analysis part II.2 Binning.ipynb +++ b/doc/BOZ analysis part II.2 Binning.ipynb @@ -23,7 +23,6 @@ "import dask\n", "print(f'dask: {dask.__version__}')\n", "\n", - "import netCDF4\n", "import xarray as xr\n", "\n", "from psutil import virtual_memory\n", diff --git a/src/toolbox_scs/routines/boz.py b/src/toolbox_scs/routines/boz.py index 63e4d2b8885a71cd234c3c21942e086d034b2c53..b37726f5854078caa78444962a6929c52164f57b 100644 --- a/src/toolbox_scs/routines/boz.py +++ b/src/toolbox_scs/routines/boz.py @@ -1187,8 +1187,8 @@ def inspect_nl_fit(res_fit): ax.plot(1.0/np.sqrt(1e-8*r[:, 0]), c='C0') ax2.plot(r[:, 2], c='C1', ls='-.') ax.set_xlabel('# iteration') - ax.set_ylabel('SNR', c='C0') - ax2.set_ylabel('correction cost', c='C1') + ax.set_ylabel('SNR', color='C0') + ax2.set_ylabel('correction cost', color='C1') ax.set_yscale('log') ax2.set_yscale('log') @@ -1337,8 +1337,7 @@ def inspect_correction(params, gain=None): good_d[n].values.flatten()/good_d[r].values.flatten(), [photon_scale, np.linspace(0.95, 1.05, 150)*m], cmap='Blues', - vmax=200, - norm=LogNorm(), + norm=LogNorm(vmax=200), # alpha=0.5 # make the plot looks ugly with lots of white lines ) h, xedges, yedges, img2 = axs[l, k].hist2d( @@ -1346,8 +1345,7 @@ def inspect_correction(params, gain=None): sat_d[n].values.flatten()/sat_d[r].values.flatten(), [photon_scale, np.linspace(0.95, 1.05, 150)*m], cmap='Reds', - vmax=200, - norm=LogNorm(), + norm=LogNorm(vmax=200), # alpha=0.5 # make the plot looks ugly with lots of white lines ) @@ -1468,7 +1466,7 @@ def inspect_saturation(data, gain, Nbins=200): c=f'C{kk}', alpha=0.4) ax.text(0.6, 0.9, f"saturation: {sat_percent:.2f}%", - c='r', alpha=0.5, transform=plt.gca().transAxes) + color='r', alpha=0.5, transform=plt.gca().transAxes) ax.legend() ax.set_xlabel(r'10$^6$ ph') ax.set_ylabel('density')