diff --git a/src/toolbox_scs/detectors/hrixs.py b/src/toolbox_scs/detectors/hrixs.py index ca800e8595514d13243b7ff3452692ce86531031..96a0a8ed13c24ab59cf86f8ed94d6ed88072770a 100644 --- a/src/toolbox_scs/detectors/hrixs.py +++ b/src/toolbox_scs/detectors/hrixs.py @@ -493,28 +493,73 @@ class hRIXS: return data - def align_readouts(self,data,method,start,stop,fit_tol=None): + def align_readouts(self,data_list,start,stop,method='max_value',ImageGrouping=1,fit_tol=None): + import xarray as xa import scipy as sp from scipy import optimize #******************************************** - # aligns spectra in a given data xarray + # aligns spectra in a given list of data from + # + # data = h.from_run(runind,2776) + # OR + # data = h.centroid(data,return_hits=True) + # + # One can choose to handle + # Grouping = 'run' + # Grouping = integer (1 means each image separately) # METHOD # -max_value # -autocorrelation # -gauss_fit # start and stop are values of data.energy # that define the range of these operations - # RETURNS LINE CENTER POSITIONS - # (and in future perhaps shifted spectra) + # RETURNS: + # energy grid and shifted spectra #******************************************** + # Accept a list of data xarrays. I needed + # to write it this way as xarray was hard + #******************************************** + energy = data_list[0].energy.to_numpy() + if type(ImageGrouping)==type(1): + #******************************************** + # Group data to bunches of a given number of + # Images + #******************************************** + data = xa.concat(data_list,dim='trainId') + spectra = [] + xhits = [] + Ngroups = data.spectrum.shape[0]//ImageGrouping + # First the groups with full length + for groupind in range(Ngroups): + spectra.append(np.sum(data.spectrum[groupind*ImageGrouping:(groupind+1)*ImageGrouping].to_numpy(),axis=0)) + xhits.append(np.hstack(data.xhits[groupind*ImageGrouping:(groupind+1)*ImageGrouping].to_numpy())) + # if the leftover tail is more than a half of full length, add it too + if data.spectrum.shape[0]%ImageGrouping > ImageGrouping/2: + spectra.append(np.sum(data.spectrum[Ngroups*ImageGrouping::].to_numpy(),axis=0)) + xhits.append(np.hstack(xhits[Ngroups*ImageGrouping::].to_numpy())) + elif ImageGrouping.lower() == 'run' or ImageGrouping.lower() == 'runs': + #******************************************** + # Group data by runs + #******************************************** + spectra = [] + xhits = [] + for rundata in data_list: + runspectrum = np.zeros(energy.shape) + runxhits = [] + for spec,hits in zip(rundata.spectrum,rundata.xhits): + runspectrum += spec.to_numpy() + runxhits.append(hits.to_numpy()) + spectra.append(runspectrum) + xhits.append(np.hstack(runxhits)) + else: + raise Exception('align_readouts() needs a reasonable grouping argument') #******************************************** #******************************************** - # PART 1: find shifts + # PART 1: find peak positions #******************************************** #******************************************** - searchinds = (data.energy >=start)*(data.energy <=stop) + searchinds = (energy >=start)*(energy <=stop) peak_posis = [] - chan_shift = [] #******************************************** # Simple maximum alignment #******************************************** @@ -522,16 +567,13 @@ class hRIXS: #******************************************** # Find the max for each of the spectra #******************************************** - for ind,spec in enumerate(data.spectrum): - x = data.energy.to_numpy()[searchinds] - y = spec.to_numpy()[searchinds] + for ind,spec in enumerate(spectra): + x = energy[searchinds] + y = spec[searchinds] maxipos = np.argmax(y) peak_posis.append(x[maxipos]) if ind==0: maxipos0 = maxipos - chan_shift.append(0) - else: - chan_shift.append(maxipos-maxipos0) #******************************************** # Alignment based on autocorrelation # this is a relative alignment method @@ -541,22 +583,20 @@ class hRIXS: #******************************************** # Find the max for each of the spectra #******************************************** - for ind,spec in enumerate(data.spectrum): + for ind,spec in enumerate(spectra): if ind == 0: - x0 = data.energy.to_numpy()[searchinds] - y0 = spec.to_numpy()[searchinds] - maxipos0 = np.argmax(spec.to_numpy()[searchinds]) + x0 = energy[searchinds] + y0 = spec[searchinds] + maxipos0 = np.argmax(spec[searchinds]) peak_posis.append(x0[maxipos0]) - chan_shift.append(0) else: - x = data.energy.to_numpy()[searchinds] - y = spec.to_numpy()[searchinds] + x = energy[searchinds] + y = spec[searchinds] corr_len = np.sum(searchinds) corr = sp.signal.correlate(y,y0, mode='full') maxpos = np.argmax(corr) shift = maxpos-corr_len peak_posis.append(x[maxipos0+shift]) - chan_shift.append(shift) elif method.lower() == 'gauss_fit': if fit_tol == None: raise Exception('Gauss fit requires a tolerance value.') @@ -565,18 +605,19 @@ class hRIXS: #******************************************** def Gauss(grid,x0,sigma): # Returns a normalized bell curve - # with center at x0 and sigma + # with center at x0 and std sigma # on grid return 1.0/(sigma*np.sqrt(2.0*np.pi))*np.exp(-0.5*(grid-x0)**2/sigma**2) def Cost(p,grid,spec): + # Returns squared error of spec and a bell curve presented on grid return np.sum(np.square(p[0]*Gauss(grid,p[1],p[2])-spec)) #******************************************** # Find the max for each of the spectra #******************************************** - for spec in data.spectrum: - x = data.energy.to_numpy()[searchinds] - y = spec.to_numpy()[searchinds] + for spec in spectra: + x = energy[searchinds] + y = spec[searchinds] #******************************************** # Initial Guess and bounds #******************************************** @@ -596,6 +637,9 @@ class hRIXS: if p.success: peak_posis.append(p.x[1]) else: + #******************************************** + # If fitting fails plot why and quit + #******************************************** plt.figure() plt.plot(x,y,'.') plt.plot(x,p.x[0]*Gauss(x,p.x[1],p.x[2])) @@ -620,27 +664,27 @@ class hRIXS: # we can subtract and interpolation will # not cause a problem. #******************************************** - energy_aligned=data.energy.to_numpy()-peak_posis[0] + energy_aligned=energy-peak_posis[0] ret = [] - for position,spec in zip(peak_posis,data.spectrum): + for position,spec in zip(peak_posis,spectra): grid = energy_aligned - x = data.energy.to_numpy() - position - y = spec.to_numpy() + x = energy - position + y = spec ret.append(np.interp(grid,x,y)) spectrum_aligned = np.array(ret) elif method.lower() == 'gauss_fit': e0 = peak_posis[0] energy_aligned = np.linspace(self.Y_RANGE.start, self.Y_RANGE.stop, self.BINS)-e0 ret = [] - for position,hits in zip(peak_posis,data.xhits): - spec = np.histogram(hits.to_numpy()-position,bins=self.BINS, + for position,hits in zip(peak_posis,xhits): + spectrum = np.histogram(hits-position,bins=self.BINS, range=(0-e0, self.Y_RANGE.stop - self.Y_RANGE.start-e0))[0] - ret.append(spec) + ret.append(spectrum) spectrum_aligned = np.array(ret) else: raise Exception('align_readouts() did not recognize the method.') - return energy_aligned,spectrum_aligned + return energy_aligned,spectrum_aligned def integrate(self, data):