diff --git a/src/toolbox_scs/routines/boz.py b/src/toolbox_scs/routines/boz.py index aaeb08de8c7a1294ad2c89d937ab1f69f5190e9c..bcdc92c1f6d17c7c20dc104a0334c798015102b5 100644 --- a/src/toolbox_scs/routines/boz.py +++ b/src/toolbox_scs/routines/boz.py @@ -1054,16 +1054,17 @@ def ff_refine_crit(p, alpha, params, arr_dark, arr, tid, rois, # drop saturated shots d = data.where(data['sat_sat'] == False, drop=True) - rn = xas(d, 40, Iokey='0', Itkey='n', nrjkey='0') - rp = xas(d, 40, Iokey='0', Itkey='p', nrjkey='0') - rd = xas(d, 40, Iokey='p', Itkey='n', nrjkey='0') + rn = xas(d, 40, Iokey='0', Itkey='n', nrjkey='0', fluorescence=True) + rp = xas(d, 40, Iokey='0', Itkey='p', nrjkey='0', fluorescence=True) + rd = xas(d, 40, Iokey='p', Itkey='n', nrjkey='0', fluorescence=True) - err = np.nansum(rn['sigmaA']) + np.nansum(rp['sigmaA']) + np.nansum(rd['sigmaA']) - mean = ((1.0 - np.nanmean(rn['muA']))**2 + - (1.0 - np.nanmean(rp['muA']))**2 + - (1.0 - np.nanmean(rd['muA']))**2) + err_sigma = (np.nansum(rn['sigmaA']) + np.nansum(rp['sigmaA']) + + np.nansum(rd['sigmaA'])) + err_mean = ((1.0 - np.nanmean(rn['muA']))**2 + + (1.0 - np.nanmean(rp['muA']))**2 + + (1.0 - np.nanmean(rd['muA']))**2) - return 1e3*(err*alpha + (1-alpha)*mean) + return 1e3*(alpha*err_sigma + (1-alpha)*err_mean) def ff_refine_fit(params):