diff --git a/xgm.py b/xgm.py index 97d8518369b4e5ca64fb7aa5e8acd2d172f06417..b17fbf4ff6ad7bc16ed7c61b66986f6f9629a3a1 100644 --- a/xgm.py +++ b/xgm.py @@ -141,17 +141,15 @@ def selectSASEinXGM(data, sase='sase3', xgm='SCS_XGM'): #get a list of indices where a change occured: idx_change_sa3 = np.argwhere(np.isin(npulses_sa3.trainId.values, diff.trainId.values, assume_unique=True))[:,0] - #add index 0 to get the initial pulse number per train: - idx_change_sa3 = np.insert(idx_change_sa3, 0, 0) #Same for SASE 1: diff = npulses_sa1.diff(dim='trainId') diff = diff.where(diff !=0, drop=True) idx_change_sa1 = np.argwhere(np.isin(npulses_sa1.trainId.values, diff.trainId.values, assume_unique=True))[:,0] - idx_change_sa1 = np.insert(idx_change_sa1, 0, 0) #create index that locates all changes of pulse number in both SASE1 and 3: + #add index 0 to get the initial pulse number per train: idx_change = np.unique(np.concatenate(([0], idx_change_sa3, idx_change_sa1))).astype(int) if sase=='sase1': npulses = npulses_sa1 @@ -229,24 +227,21 @@ def filterOnTrains(data, key='sase3'): filtered xarray Dataset ''' key = 'npulses_' + key - res = {} - for d in data: - res[d] = data[d].where(data[key]>0, drop=True) - return xr.Dataset(res) - + res = data.where(data[key]>0, drop=True) + return res def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, t_offset=1760, mcp=1, npulses=None): ''' Computes peak integration from raw MCP traces. Inputs: data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw') - npulses: number of pulses intstart: trace index of integration start intstop: trace index of integration stop bkgstart: trace index of background start bkgstop: trace index of background stop t_offset: index separation between two pulses mcp: MCP channel number + npulses: number of pulses Output: results: DataArray with dims trainId x max(sase3 pulses)*1MHz/intra-train rep.rate @@ -257,8 +252,8 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, t_offset=1760, mcp=1, n raise ValueError("Source not found: {}!".format(keyraw)) if npulses is None: npulses = int((data['sase3'].max().values + 1)/4) - sa3 = data['sase3'].where(data['sase3']>1)/4 - sa3 -= sa3[:,0] + sa3 = data['sase3'].where(data['sase3']>1)/4 + sa3 -= sa3[:,0] results = xr.DataArray(np.empty((sa3.shape[0], npulses)), coords=sa3.coords, dims=['trainId', 'MCP{}fromRaw'.format(mcp)]) for i in range(npulses): @@ -328,3 +323,59 @@ def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None, tim = xr.concat([tim, temp], dim='trainId') return tim +def calibrateTIM(data, rollingWindow=200, mcp=1, use_apd=True, intstart=None, intstop=None, + bkgstart=None, bkgstop=None, t_offset=1760, npulses_apd=None): + ''' Calibrate TIM signal (Peak-integrated signal) to the slow ion signal of SCS_XGM + (photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value'). + The aim is to find F so that E_tim_peak[uJ] = F x TIM_peak. For this, we want to + match the SASE3-only average TIM pulse peak per train (TIM_avg) to the slow XGM + signal E_slow. + Since E_slow is the average energy per pulse over all SASE1 and SASE3 + pulses (N1 and N3), we first extract the relative contribution C of the SASE3 pulses + by looking at the pulse-resolved signals of the SA3_XGM in the tunnel. + There, the signal of SASE1 is usually strong enough to be above noise level. + Let TIM_avg be the average of the TIM pulses (SASE3 only). + The calibration factor is then defined as: F = E_slow * C * (N1+N3) / ( N3 * TIM_avg ). + If N3 changes during the run, we locate the indices for which N3 is maximum and define + a window where to apply calibration (indices start/stop). + + Warning: the calibration does not include the transmission by the KB mirrors! + + Inputs: + data: xarray Dataset + rolling window: number of trains to perform a running average on to match + TIM-avg and E_slow + mcp: MCP channel + use_apd: boolean. If False, the TIM pulse peaks are extract from raw traces using + getTIMapd + intstart: trace index of integration start + intstop: trace index of integration stop + bkgstart: trace index of background start + bkgstop: trace index of background stop + t_offset: index separation between two pulses + mcp: MCP channel number + npulses_apd: number of pulses + + Output: + F: float, TIM calibration factor. + + ''' + start = 0 + stop = None + npulses = data['npulses_sase3'] + if not np.all(npulses == npulses[0]): + start = np.argmax(npulses.values) + stop = ntrains + np.argmax(npulses.values[::-1]) - 1 + if stop - start < rollingWindow: + print('not enough consecutive data points with the largest number of pulses per train') + start += rollingWindow + stop = np.min((ntrains, stop+rollingWindow)) + #print(start, stop) + filteredTIM = getTIMapd(data, mcp, use_apd, intstart, intstop, bkgstart, bkgstop, t_offset, npulses_apd) + sa3contrib = calcContribSASE(data, 'sase3', 'SA3_XGM') + avgFast = filteredTIM.mean(axis=1).rolling(trainId=rollingWindow).mean() + ratio = ((data['npulses_sase3']+data['npulses_sase1']) * + data['SCS_XGM_SLOW'] * sa3contrib) / (avgFast*data['npulses_sase3']) + F = float(ratio[start:stop].median().values) + return F +