From 8c7e568c25da551bb19264f9c00748c4d1886753 Mon Sep 17 00:00:00 2001
From: Laurent Mercadier <laurent.mercadier@xfel.eu>
Date: Tue, 4 May 2021 21:38:21 +0200
Subject: [PATCH] Add mnemonic machinery to take into account mnemonics
 versions

---
 doc/Loading_data_in_memory.ipynb           |  65 +-
 src/toolbox_scs/__init__.py                |   4 +-
 src/toolbox_scs/constants.py               | 718 +++++++++++----------
 src/toolbox_scs/detectors/bam_detectors.py |  19 +-
 src/toolbox_scs/detectors/digitizers.py    |  42 +-
 src/toolbox_scs/detectors/xgm.py           |  26 +-
 src/toolbox_scs/load.py                    | 157 ++---
 src/toolbox_scs/mnemonics_machinery.py     | 145 +++++
 8 files changed, 657 insertions(+), 519 deletions(-)
 create mode 100644 src/toolbox_scs/mnemonics_machinery.py

diff --git a/doc/Loading_data_in_memory.ipynb b/doc/Loading_data_in_memory.ipynb
index b553347..20b40d9 100644
--- a/doc/Loading_data_in_memory.ipynb
+++ b/doc/Loading_data_in_memory.ipynb
@@ -31,9 +31,9 @@
     {
      "data": {
       "text/plain": [
-       "{'source': 'SCS_BLU_XGM/XGM/DOOCS:output',\n",
-       " 'key': 'data.intensityTD',\n",
-       " 'dim': ['XGMbunchId']}"
+       "({'source': 'SCS_BLU_XGM/XGM/DOOCS:output',\n",
+       "  'key': 'data.intensityTD',\n",
+       "  'dim': ['XGMbunchId']},)"
       ]
      },
      "execution_count": 1,
@@ -50,7 +50,28 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "The available mnemonics can be display with: `print(list(tb.mnemonics.keys()))`."
+    "The list of available mnemonics can vary from run to run, depending on what sources were recorded. The function `mnemonics_for_run` returns the mnemonics that correspond to actual data sources in a run (`extra_data` `DataCollection`):"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "run, _ = tb.load(2212, 213)\n",
+    "run_mnemonics = tb.mnemonics_for_run(run)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"alert alert-info\">\n",
+    "\n",
+    "The mnemonics are by no means an exhaustive list of the contents of a run, but rather convenience shortcuts to the mostly used data sources at SCS. Please refer to the [extra_data](https://extra-data.readthedocs.io/en/latest/) package to access the full list of data sources present in a run.\n",
+    "\n",
+    "</div>"
    ]
   },
   {
@@ -71,7 +92,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
@@ -439,8 +460,8 @@
        "    MCP3peaks          (trainId, sa3_pId) float64 -197.7 -34.67 ... -1.213e+03\n",
        "    SCS_SA3            (trainId, sa3_pId) float64 2.839e+03 897.9 ... 8.069e+03\n",
        "Attributes:\n",
-       "    runFolder:  /gpfs/exfel/exp/SCS/201901/p002212/raw/r0208</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-d190895c-429f-49c5-b6d3-a746eeba5ee7' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-d190895c-429f-49c5-b6d3-a746eeba5ee7' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>pulse_slot</span>: 2700</li><li><span class='xr-has-index'>sa3_pId</span>: 125</li><li><span class='xr-has-index'>trainId</span>: 3066</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-4b85fc5e-de13-43f7-963b-b77286fd62b5' class='xr-section-summary-in' type='checkbox'  checked><label for='section-4b85fc5e-de13-43f7-963b-b77286fd62b5' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>520069541 520069542 ... 520072606</div><input id='attrs-07fa6d2e-5dd2-4fed-9bc9-4bddb9616c4d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-07fa6d2e-5dd2-4fed-9bc9-4bddb9616c4d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3b328c4e-f541-4092-8778-ce46b92ce7e0' class='xr-var-data-in' type='checkbox'><label for='data-3b328c4e-f541-4092-8778-ce46b92ce7e0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([520069541, 520069542, 520069543, ..., 520072604, 520072605, 520072606],\n",
-       "      dtype=uint64)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sa3_pId</span></div><div class='xr-var-dims'>(sa3_pId)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1040 1048 1056 ... 2016 2024 2032</div><input id='attrs-7e7b0279-e00c-4e72-b9b9-cf39b39185ac' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7e7b0279-e00c-4e72-b9b9-cf39b39185ac' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e4074543-0528-49db-8695-cd0f8b95bab2' class='xr-var-data-in' type='checkbox'><label for='data-e4074543-0528-49db-8695-cd0f8b95bab2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1040, 1048, 1056, 1064, 1072, 1080, 1088, 1096, 1104, 1112, 1120, 1128,\n",
+       "    runFolder:  /gpfs/exfel/exp/SCS/201901/p002212/raw/r0208</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-5749d5d4-4669-43a9-bf34-bd10d1445694' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-5749d5d4-4669-43a9-bf34-bd10d1445694' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>pulse_slot</span>: 2700</li><li><span class='xr-has-index'>sa3_pId</span>: 125</li><li><span class='xr-has-index'>trainId</span>: 3066</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-abec55c2-d5c0-4e22-82ba-37ea68bd1b34' class='xr-section-summary-in' type='checkbox'  checked><label for='section-abec55c2-d5c0-4e22-82ba-37ea68bd1b34' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>520069541 520069542 ... 520072606</div><input id='attrs-e9c66ef0-ab66-4116-b9ab-c958ace198d4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e9c66ef0-ab66-4116-b9ab-c958ace198d4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eef747e7-31e0-4cbc-9417-41afa22ac2ab' class='xr-var-data-in' type='checkbox'><label for='data-eef747e7-31e0-4cbc-9417-41afa22ac2ab' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([520069541, 520069542, 520069543, ..., 520072604, 520072605, 520072606],\n",
+       "      dtype=uint64)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sa3_pId</span></div><div class='xr-var-dims'>(sa3_pId)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1040 1048 1056 ... 2016 2024 2032</div><input id='attrs-375b6fcb-7273-4f21-9288-68533d2a75d5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-375b6fcb-7273-4f21-9288-68533d2a75d5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4dd1c96a-68b6-40d8-8e0f-bf7e75dbbd77' class='xr-var-data-in' type='checkbox'><label for='data-4dd1c96a-68b6-40d8-8e0f-bf7e75dbbd77' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1040, 1048, 1056, 1064, 1072, 1080, 1088, 1096, 1104, 1112, 1120, 1128,\n",
        "       1136, 1144, 1152, 1160, 1168, 1176, 1184, 1192, 1200, 1208, 1216, 1224,\n",
        "       1232, 1240, 1248, 1256, 1264, 1272, 1280, 1288, 1296, 1304, 1312, 1320,\n",
        "       1328, 1336, 1344, 1352, 1360, 1368, 1376, 1384, 1392, 1400, 1408, 1416,\n",
@@ -450,15 +471,15 @@
        "       1712, 1720, 1728, 1736, 1744, 1752, 1760, 1768, 1776, 1784, 1792, 1800,\n",
        "       1808, 1816, 1824, 1832, 1840, 1848, 1856, 1864, 1872, 1880, 1888, 1896,\n",
        "       1904, 1912, 1920, 1928, 1936, 1944, 1952, 1960, 1968, 1976, 1984, 1992,\n",
-       "       2000, 2008, 2016, 2024, 2032])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0744a4dc-6a08-4bd6-a4ec-28ab10915d87' class='xr-section-summary-in' type='checkbox'  checked><label for='section-0744a4dc-6a08-4bd6-a4ec-28ab10915d87' class='xr-section-summary' >Data variables: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>bunchPatternTable</span></div><div class='xr-var-dims'>(trainId, pulse_slot)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>2139945 0 2129961 0 ... 0 0 0 0</div><input id='attrs-4a316316-f1a1-4c1c-9e40-6be175d58c3c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4a316316-f1a1-4c1c-9e40-6be175d58c3c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3998e9f3-e48a-4d1b-80f6-3cdc00fab4c8' class='xr-var-data-in' type='checkbox'><label for='data-3998e9f3-e48a-4d1b-80f6-3cdc00fab4c8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2139945,       0, 2129961, ...,       0,       0,       0],\n",
+       "       2000, 2008, 2016, 2024, 2032])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2bf2a4bf-5efc-4328-90f8-6434c99e0d82' class='xr-section-summary-in' type='checkbox'  checked><label for='section-2bf2a4bf-5efc-4328-90f8-6434c99e0d82' class='xr-section-summary' >Data variables: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>bunchPatternTable</span></div><div class='xr-var-dims'>(trainId, pulse_slot)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>2139945 0 2129961 0 ... 0 0 0 0</div><input id='attrs-c6f3163a-6ff8-46d0-896d-84f4a30a1274' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c6f3163a-6ff8-46d0-896d-84f4a30a1274' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9f42782b-c07b-491c-aab0-bad6d85b08a5' class='xr-var-data-in' type='checkbox'><label for='data-9f42782b-c07b-491c-aab0-bad6d85b08a5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2139945,       0, 2129961, ...,       0,       0,       0],\n",
        "       [2141993,       0, 2129961, ...,       0,       0,       0],\n",
        "       [2139945,       0, 2129961, ...,       0,       0,       0],\n",
        "       ...,\n",
        "       [2141993,       0, 2129961, ...,       0,       0,       0],\n",
        "       [2139945,       0, 2129961, ...,       0,       0,       0],\n",
        "       [2141993,       0, 2129961, ...,       0,       0,       0]],\n",
-       "      dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>nrj</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>778.6 778.6 778.5 ... 783.4 783.4</div><input id='attrs-3133f05d-246a-498b-bbd1-a695804ca7aa' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3133f05d-246a-498b-bbd1-a695804ca7aa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8a408860-cf45-47b6-8d6c-bd86b50714b4' class='xr-var-data-in' type='checkbox'><label for='data-8a408860-cf45-47b6-8d6c-bd86b50714b4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([778.62824057, 778.55124428, 778.52251822, ..., 783.36562112,\n",
-       "       783.3947057 , 783.37531574])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>MCP3peaks</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-197.7 -34.67 ... -1.213e+03</div><input id='attrs-5734ac8d-335a-4815-9ee2-78fb4203170e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5734ac8d-335a-4815-9ee2-78fb4203170e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ae539ba8-cec2-4f31-b1b7-2c3813777b7c' class='xr-var-data-in' type='checkbox'><label for='data-ae539ba8-cec2-4f31-b1b7-2c3813777b7c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-1.97666667e+02, -3.46666667e+01,  1.83333333e+01, ...,\n",
+       "      dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>nrj</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>778.6 778.6 778.5 ... 783.4 783.4</div><input id='attrs-160a6c0f-b0f4-436b-a1d7-e391ce9be176' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-160a6c0f-b0f4-436b-a1d7-e391ce9be176' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d7477817-0648-4b12-b543-4468c4bb0021' class='xr-var-data-in' type='checkbox'><label for='data-d7477817-0648-4b12-b543-4468c4bb0021' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([778.62824057, 778.55124428, 778.52251822, ..., 783.36562112,\n",
+       "       783.3947057 , 783.37531574])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>MCP3peaks</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-197.7 -34.67 ... -1.213e+03</div><input id='attrs-aa041bc0-149c-49c6-b91a-5b1d2601beeb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-aa041bc0-149c-49c6-b91a-5b1d2601beeb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c711b983-98a1-4331-a8f6-cf6d597093fa' class='xr-var-data-in' type='checkbox'><label for='data-c711b983-98a1-4331-a8f6-cf6d597093fa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-1.97666667e+02, -3.46666667e+01,  1.83333333e+01, ...,\n",
        "        -4.95533333e+03, -2.58333333e+03, -3.64000000e+03],\n",
        "       [-1.14000000e+02, -4.00000000e+02, -2.75000000e+02, ...,\n",
        "        -1.89733333e+03, -1.63966667e+03, -9.57000000e+02],\n",
@@ -470,7 +491,7 @@
        "       [-6.08666667e+02, -7.73333333e+01,  2.33333333e+00, ...,\n",
        "        -1.58466667e+03, -9.06333333e+02, -1.04700000e+03],\n",
        "       [-4.16666667e+01, -4.10333333e+02,  5.00000000e+01, ...,\n",
-       "        -9.43666667e+02, -2.86800000e+03, -1.21266667e+03]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SCS_SA3</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.839e+03 897.9 ... 8.069e+03</div><input id='attrs-8d82e392-da97-41ca-83db-d29849d6dd1c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8d82e392-da97-41ca-83db-d29849d6dd1c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-49ac9135-f9d9-43a0-95da-0a48aff881c3' class='xr-var-data-in' type='checkbox'><label for='data-49ac9135-f9d9-43a0-95da-0a48aff881c3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 2838.68261719,   897.93481445,  1270.12817383, ...,\n",
+       "        -9.43666667e+02, -2.86800000e+03, -1.21266667e+03]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SCS_SA3</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.839e+03 897.9 ... 8.069e+03</div><input id='attrs-a2a05ecd-eb49-4e87-9483-3a5bd014bcf6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a2a05ecd-eb49-4e87-9483-3a5bd014bcf6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a20bc7cc-3de5-4cfd-ae37-0436989b734f' class='xr-var-data-in' type='checkbox'><label for='data-a20bc7cc-3de5-4cfd-ae37-0436989b734f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 2838.68261719,   897.93481445,  1270.12817383, ...,\n",
        "        33158.98046875, 19836.09570312, 27724.03515625],\n",
        "       [ 2088.77197266,   861.36578369,  3565.16918945, ...,\n",
        "        16303.64941406, 12787.91503906,  6092.00097656],\n",
@@ -482,7 +503,7 @@
        "       [ 3646.75048828,  2033.26245117,   569.56018066, ...,\n",
        "         9144.62402344,  7623.27978516,  4444.45361328],\n",
        "       [  708.95373535,  1963.84277344,   912.64025879, ...,\n",
-       "         5079.55371094, 12632.79003906,  8069.31152344]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-7ad05c3b-49ee-497e-9b89-5cd235a25de5' class='xr-section-summary-in' type='checkbox'  checked><label for='section-7ad05c3b-49ee-497e-9b89-5cd235a25de5' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>runFolder :</span></dt><dd>/gpfs/exfel/exp/SCS/201901/p002212/raw/r0208</dd></dl></div></li></ul></div></div>"
+       "         5079.55371094, 12632.79003906,  8069.31152344]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-cda1897f-d27d-40dd-a0fb-5ca7d116fb6b' class='xr-section-summary-in' type='checkbox'  checked><label for='section-cda1897f-d27d-40dd-a0fb-5ca7d116fb6b' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>runFolder :</span></dt><dd>/gpfs/exfel/exp/SCS/201901/p002212/raw/r0208</dd></dl></div></li></ul></div></div>"
       ],
       "text/plain": [
        "<xarray.Dataset>\n",
@@ -500,7 +521,7 @@
        "    runFolder:  /gpfs/exfel/exp/SCS/201901/p002212/raw/r0208"
       ]
      },
-     "execution_count": 2,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -548,7 +569,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -914,14 +935,14 @@
        "       [1499, 1502, 1508, ..., 1508, 1502, 1500]], dtype=int16)\n",
        "Coordinates:\n",
        "  * trainId  (trainId) uint64 520069541 520069542 ... 520072605 520072606\n",
-       "Dimensions without coordinates: samplesId</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'SCS_UTC1_ADQ/ADC/1:network.digitizers.channel_1_C.raw.samples'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>trainId</span>: 3066</li><li><span>samplesId</span>: 600000</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-797922ee-1be5-4715-99a3-b1e48d2a750d' class='xr-array-in' type='checkbox' checked><label for='section-797922ee-1be5-4715-99a3-b1e48d2a750d' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>1515 1500 1507 1506 1497 1505 1510 ... 1506 1508 1513 1508 1502 1500</span></div><div class='xr-array-data'><pre>array([[1515, 1500, 1507, ..., 1505, 1498, 1500],\n",
+       "Dimensions without coordinates: samplesId</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'SCS_UTC1_ADQ/ADC/1:network.digitizers.channel_1_C.raw.samples'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>trainId</span>: 3066</li><li><span>samplesId</span>: 600000</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-0d8dea0c-7010-4a3f-82b7-4dc59ecb6bb5' class='xr-array-in' type='checkbox' checked><label for='section-0d8dea0c-7010-4a3f-82b7-4dc59ecb6bb5' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>1515 1500 1507 1506 1497 1505 1510 ... 1506 1508 1513 1508 1502 1500</span></div><div class='xr-array-data'><pre>array([[1515, 1500, 1507, ..., 1505, 1498, 1500],\n",
        "       [1500, 1502, 1498, ..., 1504, 1490, 1499],\n",
        "       [1503, 1508, 1507, ..., 1512, 1500, 1496],\n",
        "       ...,\n",
        "       [1502, 1515, 1517, ..., 1503, 1498, 1509],\n",
        "       [1512, 1511, 1513, ..., 1506, 1504, 1506],\n",
-       "       [1499, 1502, 1508, ..., 1508, 1502, 1500]], dtype=int16)</pre></div></div></li><li class='xr-section-item'><input id='section-8a9e5391-7fe8-4d6a-9deb-c98f7b93332a' class='xr-section-summary-in' type='checkbox'  checked><label for='section-8a9e5391-7fe8-4d6a-9deb-c98f7b93332a' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>520069541 520069542 ... 520072606</div><input id='attrs-9435069b-6d74-409c-aed3-ac5294cce5f7' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9435069b-6d74-409c-aed3-ac5294cce5f7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-10417c8c-1a86-44b8-9e3b-d79d616b5eff' class='xr-var-data-in' type='checkbox'><label for='data-10417c8c-1a86-44b8-9e3b-d79d616b5eff' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([520069541, 520069542, 520069543, ..., 520072604, 520072605, 520072606],\n",
-       "      dtype=uint64)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-4020eff5-2cf5-4308-9874-0461d72a2239' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-4020eff5-2cf5-4308-9874-0461d72a2239' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
+       "       [1499, 1502, 1508, ..., 1508, 1502, 1500]], dtype=int16)</pre></div></div></li><li class='xr-section-item'><input id='section-f974c2c1-cd6d-4d6f-929f-17f8ffe396ca' class='xr-section-summary-in' type='checkbox'  checked><label for='section-f974c2c1-cd6d-4d6f-929f-17f8ffe396ca' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>520069541 520069542 ... 520072606</div><input id='attrs-adb662e7-d59a-4dcc-87bf-b4cb24492252' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-adb662e7-d59a-4dcc-87bf-b4cb24492252' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6a9f5877-8c70-4e0e-90f0-f06830c55b69' class='xr-var-data-in' type='checkbox'><label for='data-6a9f5877-8c70-4e0e-90f0-f06830c55b69' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([520069541, 520069542, 520069543, ..., 520072604, 520072605, 520072606],\n",
+       "      dtype=uint64)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-c90f8620-2a1d-4d41-9738-96bc8a4f4bc7' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c90f8620-2a1d-4d41-9738-96bc8a4f4bc7' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
       ],
       "text/plain": [
        "<xarray.DataArray 'SCS_UTC1_ADQ/ADC/1:network.digitizers.channel_1_C.raw.samples' (trainId: 3066, samplesId: 600000)>\n",
@@ -937,13 +958,13 @@
        "Dimensions without coordinates: samplesId"
       ]
      },
-     "execution_count": 3,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "raw_traces = run.get_array(*tb.mnemonics['MCP2raw'].values())\n",
+    "raw_traces = run.get_array(*run_mnemonics['MCP2raw'].values())\n",
     "raw_traces"
    ]
   },
@@ -956,16 +977,16 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x2ae2a8e23f60>]"
+       "[<matplotlib.lines.Line2D at 0x2aef559eed68>]"
       ]
      },
-     "execution_count": 4,
+     "execution_count": 5,
      "metadata": {},
      "output_type": "execute_result"
     },
diff --git a/src/toolbox_scs/__init__.py b/src/toolbox_scs/__init__.py
index 47d2252..f1acd89 100644
--- a/src/toolbox_scs/__init__.py
+++ b/src/toolbox_scs/__init__.py
@@ -1,6 +1,6 @@
 from .load import (load, concatenateRuns, get_array, run_by_path)
-
 from .constants import mnemonics
+from .mnemonics_machinery import mnemonics_for_run
 
 __all__ = (
     # functions
@@ -8,6 +8,7 @@ __all__ = (
     "concatenateRuns",
     "get_array",
     "run_by_path",
+    "mnemonics_for_run",
     # Classes
     # Variables
     "mnemonics",
@@ -22,6 +23,7 @@ __all__ = (
 clean_ns = [
     # filenames
     'constants',
+    'mnemonics_machinery'
     # folders
     'misc',
     'util',
diff --git a/src/toolbox_scs/constants.py b/src/toolbox_scs/constants.py
index 72eee76..b4ad8c0 100644
--- a/src/toolbox_scs/constants.py
+++ b/src/toolbox_scs/constants.py
@@ -1,281 +1,303 @@
 mnemonics = {
     # Machine
-    "sase3": {'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
-              'key': 'sase3.pulseIds.value',
-              'dim': ['bunchId']},
-    "sase2": {'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
-              'key': 'sase2.pulseIds.value',
-              'dim': ['bunchId']},
-    "sase1": {'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
-              'key': 'sase1.pulseIds.value',
-              'dim': ['bunchId']},
-    "maindump": {'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
-                 'key': 'maindump.pulseIds.value',
-                 'dim': ['bunchId']},
-    "bunchpattern": {'source': 'SCS_RR_UTC/TSYS/TIMESERVER',
-                     'key': 'readBunchPatternTable.value',
-                     'dim': None},
-    "bunchPatternTable": {'source': 'SCS_RR_UTC/TSYS/TIMESERVER',
-                          'key': 'bunchPatternTable.value',
-                          'dim': ['pulse_slot']},
-    "npulses_sase3": {'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
-                      'key': 'sase3.nPulses.value',
-                      'dim': None},
-    "npulses_sase1": {'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
-                      'key': 'sase1.nPulses.value',
-                      'dim': None},
-    "bunchPatternTable_SA3": {
-        'source': 'SA3_BR_UTC/TSYS/TIMESERVER:outputBunchPattern',
-        'key': 'data.bunchPatternTable',
-        'dim': ['pulse_slot']},
+    "sase3": ({'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
+               'key': 'sase3.pulseIds.value',
+               'dim': ['bunchId']},),
+    "sase2": ({'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
+               'key': 'sase2.pulseIds.value',
+               'dim': ['bunchId']},),
+    "sase1": ({'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
+               'key': 'sase1.pulseIds.value',
+               'dim': ['bunchId']},),
+    "maindump": ({'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
+                  'key': 'maindump.pulseIds.value',
+                  'dim': ['bunchId']},),
+    "bunchpattern": ({'source': 'SCS_RR_UTC/TSYS/TIMESERVER',
+                      'key': 'readBunchPatternTable.value',
+                      'dim': None},),
+    "bunchPatternTable": (
+        {'source': 'SCS_RR_UTC/TSYS/TIMESERVER:outputBunchPattern',
+         'key': 'data.bunchPatternTable',
+         'dim': ['pulse_slot']},
+        {'source': 'SCS_RR_UTC/TSYS/TIMESERVER',
+         'key': 'bunchPatternTable.value',
+         'dim': ['pulse_slot']}),
+    "npulses_sase3": ({'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
+                       'key': 'sase3.nPulses.value',
+                       'dim': None},),
+    "npulses_sase1": ({'source': 'SCS_RR_UTC/MDL/BUNCH_DECODER',
+                       'key': 'sase1.nPulses.value',
+                       'dim': None},),
+    "bunchPatternTable_SA3": (
+        {'source': 'SA3_BR_UTC/TSYS/TIMESERVER:outputBunchPattern',
+         'key': 'data.bunchPatternTable',
+         'dim': ['pulse_slot']},),
 
     # Bunch Arrival Monitors
-    "BAM414": {'source': 'SCS_ILH_LAS/DOOCS/BAM_414_B2:output',
-             'key': 'data.lowChargeArrivalTime',
-             'dim': ['BAMbunchId']},
-    "BAM1932M": {'source': 'SCS_ILH_LAS/DOOCS/BAM_1932M_TL:output',
-                 'key': 'data.lowChargeArrivalTime',
-                 'dim': ['BAMbunchId']},
-    "BAM1932S": {'source': 'SCS_ILH_LAS/DOOCS/BAM_1932S_TL:output',
-                 'key': 'data.lowChargeArrivalTime',
-                 'dim': ['BAMbunchId']},
+    "BAM414": ({'source': 'SCS_ILH_LAS/DOOCS/BAM_414_B2:output',
+                'key': 'data.lowChargeArrivalTime',
+                'dim': ['BAMbunchId']},),
+    "BAM1932M": ({'source': 'SCS_ILH_LAS/DOOCS/BAM_1932M_TL:output',
+                  'key': 'data.lowChargeArrivalTime',
+                  'dim': ['BAMbunchId']},),
+    "BAM1932S": ({'source': 'SCS_ILH_LAS/DOOCS/BAM_1932S_TL:output',
+                  'key': 'data.lowChargeArrivalTime',
+                  'dim': ['BAMbunchId']},),
 
     # SA3
-    "nrj": {'source': 'SA3_XTD10_MONO/MDL/PHOTON_ENERGY',
-            'key': 'actualEnergy.value',
-            'dim': None},
+    "nrj": ({'source': 'SA3_XTD10_MONO/MDL/PHOTON_ENERGY',
+             'key': 'actualEnergy.value',
+             'dim': None},),
 
-    "M2BEND": {'source': 'SA3_XTD10_MIRR-2/MOTOR/BENDER',
-               'key': 'actualPosition.value',
-               'dim': None},
-    "VSLIT": {'source': 'SA3_XTD10_VSLIT/MDL/BLADE',
-              'key': 'actualGap.value',
-              'dim': None},
-    "ESLIT": {'source': 'SCS_XTD10_ESLIT/MDL/MAIN',
-              'key': 'actualGap.value',
-              'dim': None},
-    "HSLIT": {'source': 'SCS_XTD10_HSLIT/MDL/BLADE',
-              'key': 'actualGap.value',
-              'dim': None},
-    "transmission": {'source': 'SA3_XTD10_GATT/MDL/GATT_TRANSMISSION_MONITOR',
-                     'key': 'Estimated_Tr.value',
-                     'dim': None},
-    "GATT_pressure": {'source': 'P_GATT',
-                      'key': 'value.value',
-                      'dim': None},
-    "navitar": {'source': 'SCS_XTD10_IMGES/CAM/BEAMVIEW_NAVITAR:daqOutput',
-                'key': 'data.image.pixels',
-                'dim': ['x', 'y']},
-    "UND": {'source': 'SA3_XTD10_UND/DOOCS/PHOTON_ENERGY',
-            'key': 'actualPosition.value',
-            'dim': None},
-    # DPS imagers
-    "DPS2CAM2": {'source': 'SCS_BLU_DPS-2/CAM/IMAGER2CAMERA:daqOutput',
+    "M2BEND": ({'source': 'SA3_XTD10_MIRR-2/MOTOR/BENDER',
+                'key': 'actualPosition.value',
+                'dim': None},),
+    "VSLIT": ({'source': 'SA3_XTD10_VSLIT/MDL/BLADE',
+               'key': 'actualGap.value',
+               'dim': None},),
+    "ESLIT": ({'source': 'SCS_XTD10_ESLIT/MDL/MAIN',
+               'key': 'actualGap.value',
+               'dim': None},),
+    "HSLIT": ({'source': 'SCS_XTD10_HSLIT/MDL/BLADE',
+               'key': 'actualGap.value',
+               'dim': None},),
+    "transmission": ({'source': 'SA3_XTD10_GATT/MDL/GATT_TRANSMISSION_MONITOR',
+                      'key': 'Estimated_Tr.value',
+                      'dim': None},),
+    "GATT_pressure": ({'source': 'P_GATT',
+                       'key': 'value.value',
+                       'dim': None},),
+    "navitar": ({'source': 'SCS_XTD10_IMGES/CAM/BEAMVIEW_NAVITAR:daqOutput',
                  'key': 'data.image.pixels',
-                 'dim': ['dps2cam2_y', 'dps2cam2_x']},
+                 'dim': ['x', 'y']},),
+    "UND": ({'source': 'SA3_XTD10_UND/DOOCS/PHOTON_ENERGY',
+             'key': 'actualPosition.value',
+             'dim': None},),
+    # DPS imagers
+    "DPS1CAM2": ({'source': 'SCS_BLU_DPS-1/CAM/IMAGER2CAMERA:daqOutput',
+                  'key': 'data.image.pixels',
+                  'dim': ['dps1cam2_y', 'dps1cam2_x']},),
+    "DPS2CAM2": ({'source': 'SCS_BLU_DPS-2/CAM/IMAGER2CAMERA:daqOutput',
+                  'key': 'data.image.pixels',
+                  'dim': ['dps2cam2_y', 'dps2cam2_x']},),
     # XTD10 XGM
     # keithley
-    "XTD10_photonFlux": {'source': 'SA3_XTD10_XGM/XGM/DOOCS',
-                         'key': 'pulseEnergy.photonFlux.value',
-                         'dim': None},
-    "XTD10_photonFlux_sigma": {'source': 'SA3_XTD10_XGM/XGM/DOOCS',
-                               'key': 'pulseEnergy.photonFluxSigma.value',
-                               'dim': None},
+    "XTD10_photonFlux": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS',
+                          'key': 'pulseEnergy.photonFlux.value',
+                          'dim': None},),
+    "XTD10_photonFlux_sigma": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS',
+                                'key': 'pulseEnergy.photonFluxSigma.value',
+                                'dim': None},),
     # ADC
-    "XTD10_XGM": {'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
-                  'key': 'data.intensityTD',
-                  'dim': ['XGMbunchId']},
-    "XTD10_XGM_sigma": {'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
-                        'key': 'data.intensitySigmaTD',
-                        'dim': ['XGMbunchId']},
-    "XTD10_SA3": {'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
-                  'key': 'data.intensitySa3TD',
-                  'dim': ['XGMbunchId']},
-    "XTD10_SA3_sigma": {'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
-                        'key': 'data.intensitySa3SigmaTD',
-                        'dim': ['XGMbunchId']},
-    "XTD10_SA1": {'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
-                  'key': 'data.intensitySa1TD',
-                  'dim': ['XGMbunchId']},
-    "XTD10_SA1_sigma": {'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
-                        'key': 'data.intensitySa1SigmaTD',
-                        'dim': ['XGMbunchId']},
+    "XTD10_XGM": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
+                   'key': 'data.intensityTD',
+                   'dim': ['XGMbunchId']},),
+    "XTD10_XGM_sigma": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
+                         'key': 'data.intensitySigmaTD',
+                         'dim': ['XGMbunchId']},),
+    "XTD10_SA3": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
+                   'key': 'data.intensitySa3TD',
+                   'dim': ['XGMbunchId']},),
+    "XTD10_SA3_sigma": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
+                         'key': 'data.intensitySa3SigmaTD',
+                         'dim': ['XGMbunchId']},),
+    "XTD10_SA1": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
+                   'key': 'data.intensitySa1TD',
+                   'dim': ['XGMbunchId']},),
+    "XTD10_SA1_sigma": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS:output',
+                         'key': 'data.intensitySa1SigmaTD',
+                         'dim': ['XGMbunchId']},),
     # low pass averaged ADC
-    "XTD10_slowTrain": {'source': 'SA3_XTD10_XGM/XGM/DOOCS',
-                        'key': 'controlData.slowTrain.value',
-                        'dim': None},
-    "XTD10_slowTrain_SA1": {'source': 'SA3_XTD10_XGM/XGM/DOOCS',
-                            'key': 'controlData.slowTrainSa1.value',
-                            'dim': None},
-    "XTD10_slowTrain_SA3": {'source': 'SA3_XTD10_XGM/XGM/DOOCS',
-                            'key': 'controlData.slowTrainSa3.value',
-                            'dim': None},
+    "XTD10_slowTrain": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS',
+                         'key': 'controlData.slowTrain.value',
+                         'dim': None},),
+    "XTD10_slowTrain_SA1": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS',
+                             'key': 'controlData.slowTrainSa1.value',
+                             'dim': None},),
+    "XTD10_slowTrain_SA3": ({'source': 'SA3_XTD10_XGM/XGM/DOOCS',
+                             'key': 'controlData.slowTrainSa3.value',
+                             'dim': None},),
 
     # SCS XGM
     # keithley
-    "SCS_photonFlux": {'source': 'SCS_BLU_XGM/XGM/DOOCS',
-                       'key': 'pulseEnergy.photonFlux.value',
-                       'dim': None},
-    "SCS_photonFlux_sigma": {'source': 'SCS_BLU_XGM/XGM/DOOCS',
-                             'key': 'pulseEnergy.photonFluxSigma.value',
-                             'dim': None},
+    "SCS_photonFlux": ({'source': 'SCS_BLU_XGM/XGM/DOOCS',
+                        'key': 'pulseEnergy.photonFlux.value',
+                        'dim': None},),
+    "SCS_photonFlux_sigma": ({'source': 'SCS_BLU_XGM/XGM/DOOCS',
+                              'key': 'pulseEnergy.photonFluxSigma.value',
+                              'dim': None},),
     # ADC
-    "SCS_XGM": {'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
-                'key': 'data.intensityTD',
-                'dim': ['XGMbunchId']},
-    "SCS_XGM_sigma": {'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
-                      'key': 'data.intensitySigmaTD',
-                      'dim': ['XGMbunchId']},
-    "SCS_SA1": {'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
-                'key': 'data.intensitySa1TD',
-                'dim': ['XGMbunchId']},
-    "SCS_SA1_sigma": {'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
-                      'key': 'data.intensitySa1SigmaTD',
-                      'dim': ['XGMbunchId']},
-    "SCS_SA3": {'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
-                'key': 'data.intensitySa3TD',
-                'dim': ['XGMbunchId']},
-    "SCS_SA3_sigma": {'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
-                      'key': 'data.intensitySa3SigmaTD',
-                      'dim': ['XGMbunchId']},
+    "SCS_XGM": ({'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
+                 'key': 'data.intensityTD',
+                 'dim': ['XGMbunchId']},),
+    "SCS_XGM_sigma": ({'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
+                       'key': 'data.intensitySigmaTD',
+                       'dim': ['XGMbunchId']},),
+    "SCS_SA1": ({'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
+                 'key': 'data.intensitySa1TD',
+                 'dim': ['XGMbunchId']},),
+    "SCS_SA1_sigma": ({'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
+                       'key': 'data.intensitySa1SigmaTD',
+                       'dim': ['XGMbunchId']},),
+    "SCS_SA3": ({'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
+                 'key': 'data.intensitySa3TD',
+                 'dim': ['XGMbunchId']},),
+    "SCS_SA3_sigma": ({'source': 'SCS_BLU_XGM/XGM/DOOCS:output',
+                       'key': 'data.intensitySa3SigmaTD',
+                       'dim': ['XGMbunchId']},),
     # low pass averaged ADC
-    "SCS_slowTrain": {'source': 'SCS_BLU_XGM/XGM/DOOCS',
-                      'key': 'controlData.slowTrain.value',
-                      'dim': None},
-    "SCS_slowTrain_SA1": {'source': 'SCS_BLU_XGM/XGM/DOOCS',
-                          'key': 'controlData.slowTrainSa1.value',
-                          'dim': None},
-    "SCS_slowTrain_SA3": {'source': 'SCS_BLU_XGM/XGM/DOOCS',
-                          'key': 'controlData.slowTrainSa3.value',
-                          'dim': None},
+    "SCS_slowTrain": ({'source': 'SCS_BLU_XGM/XGM/DOOCS',
+                       'key': 'controlData.slowTrain.value',
+                       'dim': None},),
+    "SCS_slowTrain_SA1": ({'source': 'SCS_BLU_XGM/XGM/DOOCS',
+                           'key': 'controlData.slowTrainSa1.value',
+                           'dim': None},),
+    "SCS_slowTrain_SA3": ({'source': 'SCS_BLU_XGM/XGM/DOOCS',
+                           'key': 'controlData.slowTrainSa3.value',
+                           'dim': None},),
 
     # KBS
-    "HFM_CAPB": {'source': 'SCS_KBS_HFM/ASENS/CAPB',
-                 'key': 'value.value',
-                 'dim': None},
-    "HFM_CAPF": {'source': 'SCS_KBS_HFM/ASENS/CAPF',
-                 'key': 'value.value',
-                 'dim': None},
-    "HFM_CAPM": {'source': 'SCS_KBS_HFM/ASENS/CAPM',
-                 'key': 'value.value',
-                 'dim': None},
-    "HFM_BENDERB": {'source': 'SCS_KBS_HFM/MOTOR/BENDERB',
-                    'key': 'encoderPosition.value',
-                    'dim': None},
-    "HFM_BENDERF": {'source': 'SCS_KBS_HFM/MOTOR/BENDERF',
-                    'key': 'encoderPosition.value',
-                    'dim': None},
-    "VFM_CAPB": {'source': 'SCS_KBS_VFM/ASENS/CAPB',
-                 'key': 'value.value',
-                 'dim': None},
-    "VFM_CAPF": {'source': 'SCS_KBS_VFM/ASENS/CAPF',
-                 'key': 'value.value',
-                 'dim': None},
-    "VFM_CAPM": {'source': 'SCS_KBS_VFM/ASENS/CAPM',
-                 'key': 'value.value',
-                 'dim': None},
-    "VFM_BENDERB": {'source': 'SCS_KBS_VFM/MOTOR/BENDERB',
-                    'key': 'encoderPosition.value',
-                    'dim': None},
-    "VFM_BENDERF": {'source': 'SCS_KBS_VFM/MOTOR/BENDERF',
-                    'key': 'encoderPosition.value',
-                    'dim': None},
+    "HFM_CAPB": ({'source': 'SCS_KBS_HFM/ASENS/CAPB',
+                  'key': 'value.value',
+                  'dim': None},),
+    "HFM_CAPF": ({'source': 'SCS_KBS_HFM/ASENS/CAPF',
+                  'key': 'value.value',
+                  'dim': None},),
+    "HFM_CAPM": ({'source': 'SCS_KBS_HFM/ASENS/CAPM',
+                  'key': 'value.value',
+                  'dim': None},),
+    "HFM_BENDERB": ({'source': 'SCS_KBS_HFM/MOTOR/BENDERB',
+                     'key': 'encoderPosition.value',
+                     'dim': None},),
+    "HFM_BENDERF": ({'source': 'SCS_KBS_HFM/MOTOR/BENDERF',
+                     'key': 'encoderPosition.value',
+                     'dim': None},),
+    "VFM_CAPB": ({'source': 'SCS_KBS_VFM/ASENS/CAPB',
+                  'key': 'value.value',
+                  'dim': None},),
+    "VFM_CAPF": ({'source': 'SCS_KBS_VFM/ASENS/CAPF',
+                  'key': 'value.value',
+                  'dim': None},),
+    "VFM_CAPM": ({'source': 'SCS_KBS_VFM/ASENS/CAPM',
+                  'key': 'value.value',
+                  'dim': None},),
+    "VFM_BENDERB": ({'source': 'SCS_KBS_VFM/MOTOR/BENDERB',
+                     'key': 'encoderPosition.value',
+                     'dim': None},),
+    "VFM_BENDERF": ({'source': 'SCS_KBS_VFM/MOTOR/BENDERF',
+                     'key': 'encoderPosition.value',
+                     'dim': None},),
 
     # AFS LASER
-    "AFS_PhaseShifter": {'source': 'SCS_ILH_LAS/PHASESHIFTER/DOOCS',
-                         'key': 'actualPosition.value',
-                         'dim': None},
-    "AFS_DelayLine": {'source': 'SCS_ILH_LAS/MOTOR/LT3',
-                      'key': 'actualPosition.value',
-                      'dim': None},
-    "AFS_HalfWP": {'source': 'SCS_ILH_LAS/MOTOR/ROT_OPA_BWP1',
-                   'key': 'actualPosition.value',
-                   'dim': None},
-    "AFS_FocusLens": {'source': 'SCS_ILH_LAS/MOTOR/LT_SPARE1',
-                      'key': 'actualPosition.value',
-                      'dim': None},
+    "AFS_PhaseShifter": ({'source': 'SCS_ILH_LAS/PHASESHIFTER/DOOCS',
+                          'key': 'actualPosition.value',
+                          'dim': None},),
+    "AFS_DelayLine": ({'source': 'SCS_ILH_LAS/MOTOR/LT3',
+                       'key': 'actualPosition.value',
+                       'dim': None},),
+    "AFS_HalfWP": ({'source': 'SCS_ILH_LAS/MOTOR/ROT_OPA_BWP1',
+                    'key': 'actualPosition.value',
+                    'dim': None},),
+    "AFS_FocusLens": ({'source': 'SCS_ILH_LAS/MOTOR/LT_SPARE1',
+                       'key': 'actualPosition.value',
+                       'dim': None},),
     # 2nd lens of telescope
-    "AFS_TeleLens": {'source': 'SCS_ILH_LAS/MOTOR/LT2',
-                     'key': 'actualPosition.value',
-                     'dim': None},
+    "AFS_TeleLens": ({'source': 'SCS_ILH_LAS/MOTOR/LT2',
+                      'key': 'actualPosition.value',
+                      'dim': None},),
 
     # PP LASER 800 nm path
-    "PP800_PhaseShifter": {'source': 'SCS_ILH_LAS/DOOCS/PP800_PHASESHIFTER',
-                           'key': 'actualPosition.value',
-                           'dim': None},
-    "PP800_SynchDelayLine": {'source': 'SCS_ILH_LAS/DOOCS/PPL_OPT_DELAY',
-                             'key': 'actualPosition.value',
-                             'dim': None},
-    "PP800_DelayLine": {'source': 'SCS_ILH_LAS/MOTOR/LT3',
+    "PP800_PhaseShifter": ({'source': 'SCS_ILH_LAS/DOOCS/PP800_PHASESHIFTER',
+                            'key': 'actualPosition.value',
+                            'dim': None},),
+    "PP800_SynchDelayLine": ({'source': 'SCS_ILH_LAS/DOOCS/PPL_OPT_DELAY',
+                              'key': 'actualPosition.value',
+                              'dim': None},),
+    "PP800_DelayLine": ({'source': 'SCS_ILH_LAS/MOTOR/LT3',
+                         'key': 'actualPosition.value',
+                         'dim': None},
+                        {'source': 'SCS_ILH_LAS/MOTOR/LT3',
+                         'key': 'AActualPosition.value',
+                         'dim': None},),
+    "PP800_HalfWP": ({'source': 'SCS_ILH_LAS/MOTOR/ROT8WP1',
+                      'key': 'actualPosition.value',
+                      'dim': None},),
+    "PP800_FocusLens": ({'source': 'SCS_ILH_LAS/MOTOR/LT_SPARE1',
+                         'key': 'actualPosition.value',
+                         'dim': None},),
+    # 1st lens of telescope (setup of August 2019)
+    "PP800_TeleLens": ({'source': 'SCS_ILH_LAS/MOTOR/LT7',
                         'key': 'actualPosition.value',
-                        'dim': None},
-    "PP800_HalfWP": {'source': 'SCS_ILH_LAS/MOTOR/ROT8WP1',
+                        'dim': None},),
+    "ILH_8CAM1": ({'source': 'SCS_ILH_LAS/CAM/8CAM1:daqOutput',
+                   'key': 'data.image.pixels',
+                   'dim': ['8cam1_y', '8cam1_x']},),
+    "ILH_10CAM1": ({'source': 'SCS_ILH_LAS/CAM/10CAM1:daqOutput',
+                    'key': 'data.image.pixels',
+                    'dim': ['10cam1_y', '10cam1_x']},),
+    "ILH_PIDelay": ({'source': 'SCS_ILH_LAS/MOTOR/PIDELAY',
                      'key': 'actualPosition.value',
-                     'dim': None},
-    "PP800_FocusLens": {'source': 'SCS_ILH_LAS/MOTOR/LT_SPARE1',
-                        'key': 'actualPosition.value',
-                        'dim': None},
-    # 1st lens of telescope (setup of August 2019)
-    "PP800_TeleLens": {'source': 'SCS_ILH_LAS/MOTOR/LT7',
-                       'key': 'actualPosition.value',
-                       'dim': None},
-    "ILH_8CAM1": {'source': 'SCS_ILH_LAS/CAM/8CAM1:daqOutput',
-                  'key': 'data.image.pixels',
-                  'dim': ['8cam1_y', '8cam1_x']},
+                     'dim': None},),
 
     # GPC
-    "GPC_EOS_DelayLine": {'source': 'SCS_CDIDET_GRD/MOTOR/IMAGER',
-                          'key': 'actualPosition.value',
-                          'dim': None},
-    "GPC_X": {'source': 'SCS_GPC_MOV/MOTOR/X',
-              'key': 'actualPosition.value',
-              'dim': None},
-    "GPC_Y": {'source': 'SCS_GPC_MOV/MOTOR/Y',
-              'key': 'actualPosition.value',
-              'dim': None},
-    "GPC_THETA": {'source': 'SCS_GPC_MOV/MOTOR/THETA',
-                  'key': 'actualPosition.value',
-                  'dim': None},
-    "GPC_THETAMAG": {'source': 'SCS_GPC_MOV/MOTOR/THETAMAG',
-                     'key': 'actualPosition.value',
-                     'dim': None},
+    "GPC_EOS_DelayLine": ({'source': 'SCS_CDIDET_GRD/MOTOR/IMAGER',
+                           'key': 'actualPosition.value',
+                           'dim': None},),
+    "GPC_X": ({'source': 'SCS_GPC_MOV/MOTOR/X',
+               'key': 'actualPosition.value',
+               'dim': None},),
+    "GPC_Y": ({'source': 'SCS_GPC_MOV/MOTOR/Y',
+               'key': 'actualPosition.value',
+               'dim': None},),
+    "GPC_THETA": ({'source': 'SCS_GPC_MOV/MOTOR/THETA',
+                   'key': 'actualPosition.value',
+                   'dim': None},),
+    "GPC_THETAMAG": ({'source': 'SCS_GPC_MOV/MOTOR/THETAMAG',
+                      'key': 'actualPosition.value',
+                      'dim': None},),
 
     # FFT
-    "scannerX": {'source': 'SCS_CDIFFT_SAM/LMOTOR/SCANNERX',
-                 'key': 'actualPosition.value',
-                 'dim': None},
-    "scannerY": {'source': 'SCS_CDIFFT_SAM/MOTOR/SCANNERY',
-                 'key': 'actualPosition.value',
-                 'dim': None},
-    "scannerY_enc": {'source': 'SCS_CDIFFT_SAM/ENC/SCANNERY',
-                     'key': 'value.value',
-                     'dim': None},
-    "SAM-Z": {'source': 'SCS_CDIFFT_MOV/ENC/SAM_Z',
-              'key': 'value.value',
-              'dim': None},
-    "magnet": {'source': 'SCS_CDIFFT_MAG/ASENS/CURRENT',
+    "scannerX": ({'source': 'SCS_CDIFFT_SAM/LMOTOR/SCANNERX',
+                  'key': 'actualPosition.value',
+                  'dim': None},),
+    "scannerY": ({'source': 'SCS_CDIFFT_SAM/MOTOR/SCANNERY',
+                  'key': 'actualPosition.value',
+                  'dim': None},),
+    "scannerY_enc": ({'source': 'SCS_CDIFFT_SAM/ENC/SCANNERY',
+                      'key': 'value.value',
+                      'dim': None},),
+    "SAM-Z": ({'source': 'SCS_CDIFFT_MOV/ENC/SAM_Z',
                'key': 'value.value',
-               'dim': None},
-    "magnet_old": {'source': 'SCS_CDIFFT_MAG/SUPPLY/CURRENT',
-                   'key': 'actualCurrent.value',
-                   'dim': None},
-    "Vertical_FDM": {'source': 'SCS_CDIFFT_LDM/CAM/CAMERA1A:daqOutput',
+               'dim': None},),
+    "magnet": ({'source': 'SCS_CDIFFT_MAG/ASENS/PSU_CMON',
+                'key': 'value.value',
+                'dim': None},
+               {'source': 'SCS_CDIFFT_MAG/ASENS/CURRENT',
+                'key': 'value.value',
+                'dim': None},
+               {'source': 'SCS_CDIFFT_MAG/SUPPLY/CURRENT',
+                'key': 'actualCurrent.value',
+                'dim': None}),
+    "Vertical_FDM": ({'source': 'SCS_CDIFFT_LDM/CAM/CAMERA1A:daqOutput',
+                      'key': 'data.image.pixels',
+                      'dim': ['vfdm_y', 'vfdm_x']},),
+    "LLC_webcam2": ({'source': 'SCS_CDILLC_VAC/CAM/WEBCAMERA2:daqOutput',
                      'key': 'data.image.pixels',
-                     'dim': ['vfdm_y', 'vfdm_x']},
+                     'dim': ['llc2_y', 'llc2_x']},),
 
     # FastCCD, if in raw folder, raw images
     #          if in proc folder, dark substracted and relative gain corrected
-    "fastccd": {'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
-                'key': 'data.image.pixels',
-                'dim': ['x', 'y']},
+    "fastccd": ({'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
+                 'key': 'data.image.pixels',
+                 'dim': ['x', 'y']},),
     # FastCCD with common mode correction
-    "fastccd_cm": {'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
-                   'key': 'data.image.pixels_cm',
-                   'dim': ['x', 'y']},
+    "fastccd_cm": ({'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
+                    'key': 'data.image.pixels_cm',
+                    'dim': ['x', 'y']},),
     # FastCCD charge split correction in very low photon count regime
-    "fastccd_classified": {'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
-                           'key': 'data.image.pixels_classified',
-                           'dim': ['x', 'y']},
+    "fastccd_classified": ({'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
+                            'key': 'data.image.pixels_classified',
+                            'dim': ['x', 'y']},),
     # FastCCD event multiplicity from the charge split correction:
     # 0: no events
     # 100, 101: single events
@@ -284,116 +306,126 @@ mnemonics = {
     # 400-403: charge split into four pixels in four different orientations
     # 1000: charge in more than four neighboring pixels. Cannot be produced
     # by a single photon alone.
-    "fastccd_patterns": {'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
-                         'key': 'data.image.patterns',
-                         'dim': ['x', 'y']},
+    "fastccd_patterns": ({'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
+                          'key': 'data.image.patterns',
+                          'dim': ['x', 'y']},),
     # FastCCD gain map, 0 high gain, 1 medium gain, 2 low gain
-    "fastccd_gain": {'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
-                     'key': 'data.image.gain',
-                     'dim': ['x', 'y']},
+    "fastccd_gain": ({'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
+                      'key': 'data.image.gain',
+                      'dim': ['x', 'y']},),
     # FastCCD mask, bad pixel map to be ignored if > 0
-    "fastccd_mask": {'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
-                     'key': 'data.image.mask',
-                     'dim': ['x', 'y']},
+    "fastccd_mask": ({'source': 'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
+                      'key': 'data.image.mask',
+                      'dim': ['x', 'y']},),
 
     # TIM
-    "MCP1apd": {'source': 'SCS_UTC1_ADQ/ADC/1:network',
-                'key': 'digitizers.channel_1_D.apd.pulseIntegral',
-                'dim': ['apdId']},
-    "MCP1raw": {'source': 'SCS_UTC1_ADQ/ADC/1:network',
-                'key': 'digitizers.channel_1_D.raw.samples',
-                'dim': ['samplesId']},
-    "MCP2apd": {'source': 'SCS_UTC1_ADQ/ADC/1:network',
-                'key': 'digitizers.channel_1_C.apd.pulseIntegral',
-                'dim': ['apdId']},
-    "MCP2raw": {'source': 'SCS_UTC1_ADQ/ADC/1:network',
-                'key': 'digitizers.channel_1_C.raw.samples',
-                'dim': ['samplesId']},
-    "MCP3apd": {'source': 'SCS_UTC1_ADQ/ADC/1:network',
-                'key': 'digitizers.channel_1_B.apd.pulseIntegral',
-                'dim': ['apdId']},
-    "MCP3raw": {'source': 'SCS_UTC1_ADQ/ADC/1:network',
-                'key': 'digitizers.channel_1_B.raw.samples',
-                'dim': ['samplesId']},
-    "MCP4apd": {'source': 'SCS_UTC1_ADQ/ADC/1:network',
-                'key': 'digitizers.channel_1_A.apd.pulseIntegral',
-                'dim': ['apdId']},
-    "MCP4raw": {'source': 'SCS_UTC1_ADQ/ADC/1:network',
-                'key': 'digitizers.channel_1_A.raw.samples',
-                'dim': ['samplesId']},
+    "MCP1apd": ({'source': 'SCS_UTC1_ADQ/ADC/1:network',
+                 'key': 'digitizers.channel_1_D.apd.pulseIntegral',
+                 'dim': ['apdId']},),
+    "MCP1raw": ({'source': 'SCS_UTC1_ADQ/ADC/1:network',
+                 'key': 'digitizers.channel_1_D.raw.samples',
+                 'dim': ['samplesId']},),
+    "MCP2apd": ({'source': 'SCS_UTC1_ADQ/ADC/1:network',
+                 'key': 'digitizers.channel_1_C.apd.pulseIntegral',
+                 'dim': ['apdId']},),
+    "MCP2raw": ({'source': 'SCS_UTC1_ADQ/ADC/1:network',
+                 'key': 'digitizers.channel_1_C.raw.samples',
+                 'dim': ['samplesId']},),
+    "MCP3apd": ({'source': 'SCS_UTC1_ADQ/ADC/1:network',
+                 'key': 'digitizers.channel_1_B.apd.pulseIntegral',
+                 'dim': ['apdId']},),
+    "MCP3raw": ({'source': 'SCS_UTC1_ADQ/ADC/1:network',
+                 'key': 'digitizers.channel_1_B.raw.samples',
+                 'dim': ['samplesId']},),
+    "MCP4apd": ({'source': 'SCS_UTC1_ADQ/ADC/1:network',
+                 'key': 'digitizers.channel_1_A.apd.pulseIntegral',
+                 'dim': ['apdId']},),
+    "MCP4raw": ({'source': 'SCS_UTC1_ADQ/ADC/1:network',
+                 'key': 'digitizers.channel_1_A.raw.samples',
+                 'dim': ['samplesId']},),
 
     # FastADC
-    "FastADC0peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_0.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC0raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_0.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC1peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_1.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC1raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_1.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC2peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_2.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC2raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_2.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC3peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_3.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC3raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_3.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC4peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_4.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC4raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_4.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC5peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_5.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC5raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_5.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC6peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_6.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC6raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_6.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC7peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_7.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC7raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_7.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC8peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_8.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC8raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_8.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
-    "FastADC9peaks": {'source': 'SCS_UTC1_MCP/ADC/1:channel_9.output',
-                      'key': 'data.peaks',
-                      'dim': ['peakId']},
-    "FastADC9raw": {'source': 'SCS_UTC1_MCP/ADC/1:channel_9.output',
-                    'key': 'data.rawData',
-                    'dim': ['fadc_samplesId']},
+    "FastADC0peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_0.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC0raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_0.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC1peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_1.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC1raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_1.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC2peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_2.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC2raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_2.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC3peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_3.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC3raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_3.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC4peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_4.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC4raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_4.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC5peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_5.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC5raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_5.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC6peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_6.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC6raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_6.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC7peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_7.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC7raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_7.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC8peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_8.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC8raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_8.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
+    "FastADC9peaks": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_9.output',
+                       'key': 'data.peaks',
+                       'dim': ['peakId']},),
+    "FastADC9raw": ({'source': 'SCS_UTC1_MCP/ADC/1:channel_9.output',
+                     'key': 'data.rawData',
+                     'dim': ['fadc_samplesId']},),
 
     # KARABACON
-    "KARABACON": {'source': 'SCS_DAQ_SCAN/MDL/KARABACON',
-                  'key': 'actualStep.value',
-                  'dim': None},
+    "KARABACON": ({'source': 'SCS_DAQ_SCAN/MDL/KARABACON',
+                   'key': 'actualStep.value',
+                   'dim': None},),
 
     # GOTTHARD
-    "Gotthard1": {'source': 'SCS_PAM_XOX/DET/GOTTHARD_RECEIVER1:daqOutput',
-                  'key': 'data.adc',
-                  'dim': ['gott_pId', 'pixelId']},
-    "Gotthard2": {'source': 'SCS_PAM_XOX/DET/GOTTHARD_RECEIVER2:daqOutput',
-                  'key': 'data.adc',
-                  'dim': ['gott_pId', 'pixelId']}
+    "Gotthard1": ({'source': 'SCS_PAM_XOX/DET/GOTTHARD_RECEIVER1:daqOutput',
+                   'key': 'data.adc',
+                   'dim': ['gott_pId', 'pixelId']},),
+    "Gotthard2": ({'source': 'SCS_PAM_XOX/DET/GOTTHARD_RECEIVER2:daqOutput',
+                   'key': 'data.adc',
+                   'dim': ['gott_pId', 'pixelId']},),
+
+    # BASLER RACER
+    "Racer1": ({'source': 'SCS_PAM_XOX/CAM/RACER1:daqOutput',
+                'key': 'data.image.pixels',
+                'dim': ['racer1_pId', 'racer1_x']},),
+
+    # BBO2 RY (interferometric timing tool, Nov 2020, p2711)
+    "BBO_RY": ({'source': 'SCS_CDIDET_GRD/MOTOR/IMAGER',
+                'key': 'actualPosition.value',
+                'dim': None},)
 }
diff --git a/src/toolbox_scs/detectors/bam_detectors.py b/src/toolbox_scs/detectors/bam_detectors.py
index 4b0d77f..12d6ef1 100644
--- a/src/toolbox_scs/detectors/bam_detectors.py
+++ b/src/toolbox_scs/detectors/bam_detectors.py
@@ -11,9 +11,9 @@ import logging
 import numpy as np
 import xarray as xr
 
-from ..constants import mnemonics as _mnemonics
 from ..misc.bunch_pattern_external import is_pulse_at
-import toolbox_scs.load as tbload
+from ..mnemonics_machinery import (mnemonics_to_process,
+                                   mnemonics_for_run)
 
 
 log = logging.getLogger(__name__)
@@ -56,7 +56,7 @@ def get_bam(run, mnemonics=None, merge_with=None, bunchPattern='sase3'):
 
     """
     # get the list of mnemonics to process
-    mnemonics = tbload.mnemonics_to_process(mnemonics, merge_with, 'BAM')
+    mnemonics = mnemonics_to_process(mnemonics, merge_with, 'BAM')
 
     if len(mnemonics) == 0:
         log.info('No array with unaligned BAM data to extract. Skipping.')
@@ -70,25 +70,26 @@ def get_bam(run, mnemonics=None, merge_with=None, bunchPattern='sase3'):
     else:
         mw_ds = xr.Dataset()
 
+    run_mnemonics = mnemonics_for_run(run)
     # extract the XFEL pulses: slice(0,5400,2)
     roi = np.s_[:5400:2]
     ds = xr.Dataset()
     for m in mnemonics:
         if bool(merge_with) and m in merge_with:
-            val = merge_with[m].isel({_mnemonics[m]['dim'][0]: roi})
+            val = merge_with[m].isel({run_mnemonics[m]['dim'][0]: roi})
             log.debug(f'Using {m} from merge_with dataset.')
         else:
-            val = run.get_array(*_mnemonics[m].values(), roi=roi, name=m)
+            val = run.get_array(*run_mnemonics[m].values(), roi=roi, name=m)
             log.debug(f'Loading {m} from DataCollection.')
-        val[_mnemonics[m]['dim'][0]] = np.arange(2700)
+        val[run_mnemonics[m]['dim'][0]] = np.arange(2700)
         ds = ds.merge(val, join='inner')
 
     # check if bunch pattern table exists
     if bool(merge_with) and 'bunchPatternTable' in merge_with:
         bpt = merge_with['bunchPatternTable']
         log.debug('Using bpt from merge_with dataset.')
-    elif _mnemonics['bunchPatternTable']['source'] in run.all_sources:
-        bpt = run.get_array(*_mnemonics['bunchPatternTable'].values())
+    elif 'bunchPatternTable' in run_mnemonics:
+        bpt = run.get_array(*run_mnemonics['bunchPatternTable'].values())
         log.debug('Loaded bpt from extra_data run.')
     else:
         bpt = None
@@ -99,7 +100,7 @@ def get_bam(run, mnemonics=None, merge_with=None, bunchPattern='sase3'):
                      'scs_ppl': 'ol_pId'}
         mask = is_pulse_at(bpt, bunchPattern)
         mask = mask.rename({'pulse_slot': dim_names[bunchPattern]})
-        ds = ds.rename({_mnemonics['BAM1932M']['dim'][0]:
+        ds = ds.rename({run_mnemonics['BAM1932M']['dim'][0]:
                         dim_names[bunchPattern]})
         ds = ds.where(mask, drop=True)
 
diff --git a/src/toolbox_scs/detectors/digitizers.py b/src/toolbox_scs/detectors/digitizers.py
index d412cbf..b677323 100644
--- a/src/toolbox_scs/detectors/digitizers.py
+++ b/src/toolbox_scs/detectors/digitizers.py
@@ -13,10 +13,10 @@ import xarray as xr
 import matplotlib.pyplot as plt
 from scipy.signal import find_peaks
 
-from ..constants import mnemonics as _mnemonics
 from ..misc.bunch_pattern_external import is_pulse_at
 from ..util.exceptions import ToolBoxValueError
-import toolbox_scs.load as tbload
+from ..mnemonics_machinery import (mnemonics_to_process,
+                                   mnemonics_for_run)
 
 log = logging.getLogger(__name__)
 
@@ -223,14 +223,15 @@ def get_peaks(run,
                          'are required.')
     # Load data
     arr = None
+    run_mnemonics = mnemonics_for_run(run)
     if data is None:
         log.debug(f'Loading array from DataCollection with {source}, {key}')
         arr = run.get_array(source, key)
     if isinstance(data, str):
         log.debug(f'Loading array from mnemonic {data}')
-        arr = run.get_array(*_mnemonics[data].values())
-        source = _mnemonics[data]['source']
-        key = _mnemonics[data]['key']
+        arr = run.get_array(*run_mnemonics[data].values())
+        source = run_mnemonics[data]['source']
+        key = run_mnemonics[data]['key']
     if arr is None:
         log.debug('Using array provided in data argument.')
         if source is None or key is None:
@@ -244,8 +245,8 @@ def get_peaks(run,
             bpt = run.get_array(bunchPattern['source'], bunchPattern['key'],
                                 extra_dims=['pulse_slot'])
             pattern = bunchPattern['pattern']
-        if _mnemonics['bunchPatternTable']['source'] in run.all_sources:
-            bpt = run.get_array(*_mnemonics['bunchPatternTable'].values())
+        if 'bunchPatternTable' in run_mnemonics:
+            bpt = run.get_array(*run_mnemonics['bunchPatternTable'].values())
             pattern = bunchPattern
     else:
         pattern = bunchPattern
@@ -375,8 +376,9 @@ def channel_peak_params(run, source, key=None, digitizer=None,
     -------
     dict with peak integration parameters.
     """
-    if source in _mnemonics:
-        m = _mnemonics[source]
+    run_mnemonics = mnemonics_for_run(run)
+    if source in run_mnemonics:
+        m = run_mnemonics[source]
         source = m['source']
         key = m['key']
     if key is not None:
@@ -510,7 +512,8 @@ def get_peak_params(run, mnemonic, raw_trace=None, ntrains=200):
         Only used if raw_trace is None. Number of trains used to
         calculate the average raw trace of the corresponding channel.
     """
-    if mnemonic not in _mnemonics:
+    run_mnemonics = mnemonics_for_run(run)
+    if mnemonic not in run_mnemonics:
         raise ToolBoxValueError("mnemonic must be a ToolBox mnemonics")
     if "raw" not in mnemonic:
         mnemo_raw = mnemonic.replace('peaks', 'raw').replace('apd', 'raw')
@@ -524,7 +527,7 @@ def get_peak_params(run, mnemonic, raw_trace=None, ntrains=200):
         title = 'Auto-find peak params'
         if raw_trace is None:
             sel = run.select_trains(np.s_[:ntrains])
-            raw_trace = sel.get_array(*_mnemonics[mnemo_raw].values())
+            raw_trace = sel.get_array(*run_mnemonics[mnemo_raw].values())
             raw_trace = raw_trace.mean(dim='trainId')
         params = find_integ_params(raw_trace, min_distance=min_distance)
     log.debug(f'{title} for {mnemonic}: {params}')
@@ -569,6 +572,7 @@ def check_peak_params(run, mnemonic, raw_trace=None, ntrains=200, params=None,
     -------
     dictionnary of peak integration parameters
     """
+    run_mnemonics = mnemonics_for_run(run)
     if "raw" in mnemonic:
         mnemo_raw = mnemonic
         title = 'Auto-find peak params'
@@ -577,7 +581,7 @@ def check_peak_params(run, mnemonic, raw_trace=None, ntrains=200, params=None,
         title = 'Digitizer peak params'
     if raw_trace is None:
         sel = run.select_trains(np.s_[:ntrains])
-        raw_trace = sel.get_array(*_mnemonics[mnemo_raw].values())
+        raw_trace = sel.get_array(*run_mnemonics[mnemo_raw].values())
         raw_trace = raw_trace.mean(dim='trainId')
     if params is None:
         params = get_peak_params(run, mnemonic, raw_trace)
@@ -586,11 +590,10 @@ def check_peak_params(run, mnemonic, raw_trace=None, ntrains=200, params=None,
     if not plot:
         return params
     min_distance = 24 if "FastADC" in mnemonic else 440
-    if _mnemonics['bunchPatternTable']['source'] in sel.all_sources \
-            and bunchPattern != 'None':
+    if 'bunchPatternTable' in run_mnemonics and bunchPattern != 'None':
         sel = run.select_trains(np.s_[:ntrains])
         bp_params = {}
-        bpt = sel.get_array(*_mnemonics['bunchPatternTable'].values())
+        bpt = sel.get_array(*run_mnemonics['bunchPatternTable'].values())
         mask = is_pulse_at(bpt, bunchPattern)
         pid = np.sort(np.unique(np.where(mask)[1]))
         bp_params['npulses'] = len(pid)
@@ -816,7 +819,7 @@ def get_digitizer_peaks(run, mnemonics, digitizer, merge_with=None,
     # get the list of mnemonics to process
     def to_processed_name(name):
         return name.replace('raw', 'peaks').replace('apd', 'peaks')
-    mnemonics = tbload.mnemonics_to_process(mnemonics, merge_with,
+    mnemonics = mnemonics_to_process(mnemonics, merge_with,
                                              digitizer, to_processed_name)
 
     if len(mnemonics) == 0:
@@ -826,12 +829,13 @@ def get_digitizer_peaks(run, mnemonics, digitizer, merge_with=None,
     else:
         log.info(f'Extracting {digitizer} peaks from {mnemonics}.')
 
+    run_mnemonics = mnemonics_for_run(run)
     # check if bunch pattern table exists
     if bool(merge_with) and 'bunchPatternTable' in merge_with:
         bpt = merge_with['bunchPatternTable']
         log.debug('Using bpt from merge_with dataset.')
-    elif _mnemonics['bunchPatternTable']['source'] in run.all_sources:
-        bpt = run.get_array(*_mnemonics['bunchPatternTable'].values())
+    elif 'bunchPatternTable' in run_mnemonics:
+        bpt = run.get_array(*run_mnemonics['bunchPatternTable'].values())
         log.debug('Loaded bpt from DataCollection.')
     else:
         bpt = None
@@ -846,7 +850,7 @@ def get_digitizer_peaks(run, mnemonics, digitizer, merge_with=None,
     vals = []
     for k in mnemonics:
         useRaw = True if 'raw' in k else False
-        m = _mnemonics[k]
+        m = run_mnemonics[k]
         if bool(merge_with) and k in merge_with:
             data = merge_with[k]
         else:
diff --git a/src/toolbox_scs/detectors/xgm.py b/src/toolbox_scs/detectors/xgm.py
index bed5941..cdb84dc 100644
--- a/src/toolbox_scs/detectors/xgm.py
+++ b/src/toolbox_scs/detectors/xgm.py
@@ -12,9 +12,9 @@ import numpy as np
 import xarray as xr
 import matplotlib.pyplot as plt
 
-from ..constants import mnemonics as _mnemonics
 from ..misc.bunch_pattern_external import is_sase_1, is_sase_3
-import toolbox_scs.load as tbload
+from ..mnemonics_machinery import (mnemonics_to_process,
+                                   mnemonics_for_run)
 
 
 log = logging.getLogger(__name__)
@@ -59,7 +59,7 @@ def get_xgm(run, mnemonics=None, merge_with=None, keepAllSase=False,
 
     """
     # get the list of mnemonics to process
-    mnemonics = tbload.mnemonics_to_process(mnemonics, merge_with, 'XGM')
+    mnemonics = mnemonics_to_process(mnemonics, merge_with, 'XGM')
 
     if len(mnemonics) == 0:
         log.info('No array with unaligned XGM peaks to extract. Skipping.')
@@ -73,12 +73,13 @@ def get_xgm(run, mnemonics=None, merge_with=None, keepAllSase=False,
     else:
         ds = xr.Dataset()
 
+    run_mnemonics = mnemonics_for_run(run)
     # check if bunch pattern table exists
     if bool(merge_with) and 'bunchPatternTable' in merge_with:
         bpt = merge_with['bunchPatternTable']
         log.debug('Using bpt from merge_with dataset.')
-    elif _mnemonics['bunchPatternTable']['source'] in run.all_sources:
-        bpt = run.get_array(*_mnemonics['bunchPatternTable'].values())
+    elif 'bunchPatternTable' in run_mnemonics:
+        bpt = run.get_array(*run_mnemonics['bunchPatternTable'].values())
         log.debug('Loaded bpt from DataCollection.')
     else:
         bpt = None
@@ -89,7 +90,7 @@ def get_xgm(run, mnemonics=None, merge_with=None, keepAllSase=False,
             arr = merge_with[m]
             log.debug(f'Using {m} from merge_with dataset.')
         else:
-            arr = run.get_array(*_mnemonics[m].values(), name=m)
+            arr = run.get_array(*run_mnemonics[m].values(), name=m)
             log.debug(f'Loading {m} from DataCollection.')
         if bpt is not None:
             arr = align_xgm_array(arr, bpt)
@@ -226,13 +227,14 @@ def calibrate_xgm(run, data, xgm='SCS', plot=False):
     >>> ds['SCS_SA3_uJ'] = F * ds['SCS_SA3']
     """
 
+    run_mnemonics = mnemonics_for_run(run)
+    # check if bunch pattern table exists
     if 'bunchPatternTable' in data:
         bpt = data['bunchPatternTable']
-        log.debug('Using bpt from provided dataset.')
-    elif _mnemonics['bunchPatternTable']['source'] in run.all_sources:
-        bpt = run.get_array(*_mnemonics['bunchPatternTable'].values())
-    elif _mnemonics['bunchPatternTable_SA3']['source'] in run.all_sources:
-        bpt = run.get_array(*_mnemonics['bunchPatternTable_SA3'].values())
+    elif 'bunchPatternTable' in run_mnemonics:
+        bpt = run.get_array(*run_mnemonics['bunchPatternTable'].values())
+    elif 'bunchPatternTable_SA3' in run_mnemonics:
+        bpt = run.get_array(*run_mnemonics['bunchPatternTable_SA3'].values())
     else:
         raise ValueError('Bunch pattern missing. Cannot calibrate XGM.')
     mask_sa3 = is_sase_3(bpt.sel(trainId=data.trainId))
@@ -254,7 +256,7 @@ def calibrate_xgm(run, data, xgm='SCS', plot=False):
     if pflux_key in data:
         pflux = data[pflux_key]
     else:
-        pflux = run.get_array(*_mnemonics[pflux_key].values())
+        pflux = run.get_array(*run_mnemonics[pflux_key].values())
         pflux = pflux.sel(trainId=data.trainId)
     pflux_sa3 = (npulses_sa1 + npulses_sa3) * pflux / npulses_sa3
     avg_fast = data[f'{xgm}_SA3'].rolling(trainId=200).mean().mean(axis=1)
diff --git a/src/toolbox_scs/load.py b/src/toolbox_scs/load.py
index 19021e7..5ebac8b 100644
--- a/src/toolbox_scs/load.py
+++ b/src/toolbox_scs/load.py
@@ -15,6 +15,7 @@ import xarray as xr
 import extra_data as ed
 
 from .constants import mnemonics as _mnemonics
+from .mnemonics_machinery import mnemonics_for_run
 from .util.exceptions import ToolBoxValueError, ToolBoxPathError
 from .util.data_access import find_run_dir
 import toolbox_scs.detectors as tbdet
@@ -75,17 +76,21 @@ def load(proposalNB=None, runNB=None,
         'MCP3apd') and aligns the pulse Id with the sase3 bunch pattern.
     extract_laser: bool
         If True, extracts the peaks from FastADC variables (e.g. 'FastADC5raw',
-        'FastADC3peaks') and aligns the pulse Id with the PP laser bunch pattern.
+        'FastADC3peaks') and aligns the pulse Id with the PP laser bunch
+        pattern.
     extract_xgm: bool
         If True, extracts the values from XGM variables (e.g. 'SCS_SA3',
-        'XTD10_XGM') and aligns the pulse Id with the sase1 / sase3 bunch pattern.
+        'XTD10_XGM') and aligns the pulse Id with the sase1 / sase3 bunch
+        pattern.
     extract_bam: bool
         If True, extracts the values from BAM variables (e.g. 'BAM1932M')
         and aligns the pulse Id with the sase3 bunch pattern.
     tim_bp: str
-        bunch pattern used to extract the TIM pulses. Ignored if extract_tim=False.
+        bunch pattern used to extract the TIM pulses.
+        Ignored if extract_tim=False.
     laser_bp: str
-        bunch pattern used to extract the TIM pulses. Ignored if extract_tim=False.
+        bunch pattern used to extract the TIM pulses.
+        Ignored if extract_tim=False.
 
     Returns
     -------
@@ -116,23 +121,22 @@ def load(proposalNB=None, runNB=None,
         print('Loading data from {}'.format(runFolder))
         run.info()
 
-    keys = []
-    vals = []
+    data_arrays = []
 
+    run_mnemonics = mnemonics_for_run(run)
     # load pulse pattern info
-    if _mnemonics['bunchPatternTable']['source'] in run.all_sources:
-        bpt = run.get_array(*_mnemonics['bunchPatternTable'].values())
-        keys.append("bunchPatternTable")
-        vals.append(bpt)
-    elif _mnemonics['bunchPatternTable_SA3']['source'] in run.all_sources:
+    if 'bunchPatternTable' in run_mnemonics:
+        bpt = run.get_array(*run_mnemonics['bunchPatternTable'].values(),
+                            name='bunchPatternTable')
+        data_arrays.append(bpt)
+    elif 'bunchPatternTable_SA3' in run_mnemonics:
         log.info('Did not find SCS bunch pattern table but found the SA3 one.')
-        bpt = run.get_array(*_mnemonics['bunchPatternTable_SA3'].values())
-        keys.append("bunchPatternTable")
-        vals.append(bpt)
+        bpt = run.get_array(*run_mnemonics['bunchPatternTable_SA3'].values(),
+                            name='bunchPatternTable')
+        data_arrays.append(bpt)
     else:
-        log.warning('Source {} and {} not found in run. Skipping!'.format(
-                            _mnemonics['bunchPatternTable']['source'],
-                            _mnemonics['bunchPatternTable_SA3']['source'],))
+        log.warning('Bunch pattern table not found in run. Skipping!')
+
     for f in fields:
         if type(f) == dict:
             # extracting mnemomic defined on the spot
@@ -143,13 +147,18 @@ def load(proposalNB=None, runNB=None,
             v = f[k]
         else:
             # extracting mnemomic from the table
-            if f in _mnemonics:
-                v = _mnemonics[f]
+            if f in run_mnemonics:
+                v = run_mnemonics[f]
                 k = f
             else:
-                print(f'Unknow mnemonic "{f}". Skipping!')
+                if f in _mnemonics:
+                    log.warning(f'Mnemonic "{f}" not found in run. Skipping!')
+                    print(f'Mnemonic "{f}" not found in run. Skipping!')
+                else:
+                    log.warning(f'Unknow mnemonic "{f}". Skipping!')
+                    print(f'Unknow mnemonic "{f}". Skipping!')
                 continue
-        if k in keys:
+        if k in [d.name for d in data_arrays]:
             continue  # already loaded, skip
         if display:
             print(f'Loading {k}')
@@ -159,53 +168,51 @@ def load(proposalNB=None, runNB=None,
             continue
         if k not in rois:
             # no ROIs selection, we read everything
-            arr = run.get_array(*v.values())
+            arr = run.get_array(*v.values(), name=k)
             if len(arr) == 0:
                 log.warning(f'Empty array for {f}: {v["source"]}, {v["key"]}. '
                             'Skipping!')
                 print(f'Empty array for {f}: {v["source"]}, {v["key"]}. '
                       'Skipping!')
                 continue
-            vals.append(arr)
-            keys.append(k)
+            data_arrays.append(arr)
         else:
             # ROIs selection, for each ROI we select a region of the data and
             # save it with new name and dimensions
             for nk, nv in rois[k].items():
                 arr = run.get_array(v['source'], v['key'],
                                     extra_dims=nv['dim'],
-                                    roi=nv['roi'])
+                                    roi=nv['roi'],
+                                    name=nk)
                 if len(arr) == 0:
-                    log.warning(f'Empty array for {f}: {v["source"]}, {v["key"]}. '
-                                'Skipping!')
+                    log.warning(f'Empty array for {f}: {v["source"]}, '
+                                f'{v["key"]}. Skipping!')
                     print(f'Empty array for {f}: {v["source"]}, {v["key"]}. '
                           'Skipping!')
                     continue
-                vals.append(arr)
-                keys.append(nk)
-    aligned_vals = xr.align(*vals, join='inner')
-    data = dict(zip(keys, aligned_vals))
-    data = xr.Dataset(data)
+                data_arrays.append(arr)
+
+    data = xr.merge(data_arrays, join='inner')
     data.attrs['runFolder'] = runFolder
 
-    tim = [k for k in _mnemonics if 'MCP' in k and k in data]
+    tim = [k for k in run_mnemonics if 'MCP' in k and k in data]
     if extract_tim and len(tim) > 0:
         data = tbdet.get_tim_peaks(run, mnemonics=tim, merge_with=data,
                                    bunchPattern=tim_bp)
 
-    laser = [k for k in _mnemonics if 'FastADC' in k and k in data]
+    laser = [k for k in run_mnemonics if 'FastADC' in k and k in data]
     if extract_laser and len(laser) > 0:
         data = tbdet.get_laser_peaks(run, mnemonics=laser, merge_with=data,
                                      bunchPattern=laser_bp)
 
-    xgm = ['XTD10_XGM', 'XTD10_XGM_sigma', 'XTD10_SA3', 'XTD10_SA3_sigma', 
-           'XTD10_SA1', 'XTD10_SA1_sigma', 'SCS_XGM', 'SCS_XGM_sigma', 
+    xgm = ['XTD10_XGM', 'XTD10_XGM_sigma', 'XTD10_SA3', 'XTD10_SA3_sigma',
+           'XTD10_SA1', 'XTD10_SA1_sigma', 'SCS_XGM', 'SCS_XGM_sigma',
            'SCS_SA1', 'SCS_SA1_sigma', 'SCS_SA3', 'SCS_SA3_sigma']
     xgm = [k for k in xgm if k in data]
     if extract_xgm and len(xgm) > 0:
         data = tbdet.get_xgm(run, mnemonics=xgm, merge_with=data)
 
-    bam = [k for k in _mnemonics if 'BAM' in k and k in data]
+    bam = [k for k in run_mnemonics if 'BAM' in k and k in data]
     if extract_bam and len(bam) > 0:
         data = tbdet.get_bam(run, mnemonics=bam, merge_with=data)
 
@@ -314,79 +321,3 @@ def get_array(run, mnemonic_key=None, stepsize=None):
         raise
 
     return data
-
-
-def mnemonics_to_process(mnemo_list, merge_with, detector, func=None):
-    """
-    Finds the list of mnemonics, within mnemo_list and merge_with, that
-    correspond to arrays that are not yet loaded and/or processed by a
-    detector function. Removes the mnemonics of the already processed
-    arrays from the list.
-
-    Parameters
-    ----------
-    mnemo_list: str or list of str
-        ToolBox mnemonics of pulse-resolved detector arrays
-    merge_with: xarray Dataset
-        Dataset that may contain non-processed arrays
-    detector: str
-        One in {'ADQ412', 'FastADC', 'XGM', 'BAM'}
-    func: function
-        function that takes one argument, an unprocessed mnemonic string,
-        and converts it into a processed one, i.e. from 'MCP2apd' to
-        'MCP2peaks'. If None, the function returns the input mnemonic.
-
-    Returns
-    -------
-    mnemonics: list of str
-        the mnemonics to process
-    """
-    if func is None:
-        def func(x):
-            return x
-
-    if detector == 'BAM':
-        det_mnemos = [m for m in _mnemonics if 'BAM' in m]
-        default_mnemo = 'BAM1932M'
-        default_processed = 'BAM1932M'
-    if detector == 'XGM':
-        det_mnemos = ['XTD10_XGM', 'XTD10_XGM_sigma', 'XTD10_SA3',
-                      'XTD10_SA3_sigma', 'XTD10_SA1', 'XTD10_SA1_sigma',
-                      'SCS_XGM', 'SCS_XGM_sigma', 'SCS_SA1', 'SCS_SA1_sigma',
-                      'SCS_SA3', 'SCS_SA3_sigma']
-        default_mnemo = 'SCS_SA3'
-        default_processed = 'SCS_SA3'
-    if detector == 'ADQ412':
-        det_mnemos = [m for m in _mnemonics if 'MCP' in m]
-        default_mnemo = 'MCP2apd'
-        default_processed = 'MCP2peaks'
-    if detector == 'FastADC':
-        det_mnemos = [m for m in _mnemonics if 'FastADC' in m]
-        default_mnemo = 'FastADC5raw'
-        default_processed = 'FastADC5peaks'
-
-    dig_dims = list(set([_mnemonics[m]['dim'][0] for m in det_mnemos]))
-    processed_mnemos = list(set([func(m) for m in det_mnemos]))
-
-    # create a list of mnemonics to process from the provided mnemonics and
-    # merge_with Dataset
-    mw_mnemos = []
-    mw_processed = []
-    if bool(merge_with):
-        mw_mnemos = [m for m in merge_with if m in det_mnemos and
-                     any(dim in merge_with[m].dims for dim in dig_dims)]
-        mw_processed = [m for m in merge_with if m in processed_mnemos and
-                        any(dim in merge_with[m].dims for dim in dig_dims)
-                        is False]
-    if mnemo_list is None:
-        mnemonics = []
-        if len(mw_mnemos) == 0 and default_processed not in mw_processed:
-            mnemonics = [default_mnemo]
-    else:
-        mnemonics = [mnemo_list] if isinstance(mnemo_list, str) else mnemo_list
-    mnemonics = list(set(mnemonics + mw_mnemos))
-    for m in mnemonics[:]:
-        if func(m) in mw_processed:
-            mnemonics.remove(m)
-
-    return mnemonics
diff --git a/src/toolbox_scs/mnemonics_machinery.py b/src/toolbox_scs/mnemonics_machinery.py
new file mode 100644
index 0000000..dac8d1a
--- /dev/null
+++ b/src/toolbox_scs/mnemonics_machinery.py
@@ -0,0 +1,145 @@
+""" Handling ToolBox mnemonics sub-routines
+
+    Copyright (2021) SCS Team.
+
+    (contributions preferrably comply with pep8 code structure
+    guidelines.)
+"""
+
+import logging
+
+from .constants import mnemonics as _mnemonics
+
+log = logging.getLogger(__name__)
+
+
+def mnemonics_for_run(run):
+    """
+    Returns the availble ToolBox mnemonics for a give extra_data
+    DataCollection
+
+    Parameters
+    ----------
+    run: extra_data DataCollection
+        The run to check for mnemonics
+
+    Returns
+    -------
+    mnemonics: dict
+        The dictionnary of mnemonics that are available in the run.
+
+    Example
+    -------
+    >>> import toolbox_scs as tb
+    >>> run, _ = tb.load(2212, 213)
+    >>> tb.mnemonics_for_run(run)
+    """
+    result = {}
+    for m in _mnemonics:
+        version = mnemo_version_index(run, m)
+        if version != -1:
+            result[m] = _mnemonics[m][version]
+    return result
+
+
+def mnemo_version_index(run, mnemonic):
+    """
+    Given a mnemonic and a DataCollection, checks the existence of the
+    mnemonic versions within the tuple value of the mnemonic and returns the
+    valid version index.
+
+    Parameters
+    ----------
+    run: extra_data DataCollection
+        The run that contains the data source corresponding to the mnemonic
+    menmonic: str
+        A ToolBox mnemonic
+
+    Returns
+    -------
+    index: int
+        The index of the tuple. If no valid version is found, returns -1.
+
+    """
+    for i, v in enumerate(_mnemonics[mnemonic]):
+        if (v['source'] in run.all_sources and
+                v['key'] in run.keys_for_source(v['source'])):
+            log.debug(f'Found version {i} for mnemonic "{mnemonic}": {v}')
+            return i
+    return -1
+
+
+def mnemonics_to_process(mnemo_list, merge_with, detector, func=None):
+    """
+    Finds the list of mnemonics, within mnemo_list and merge_with, that
+    correspond to arrays that are not yet loaded and/or processed by a
+    detector function. Removes the mnemonics of the already processed
+    arrays from the list.
+
+    Parameters
+    ----------
+    mnemo_list: str or list of str
+        ToolBox mnemonics of pulse-resolved detector arrays
+    merge_with: xarray Dataset
+        Dataset that may contain non-processed arrays
+    detector: str
+        One in {'ADQ412', 'FastADC', 'XGM', 'BAM'}
+    func: function
+        function that takes one argument, an unprocessed mnemonic string,
+        and converts it into a processed one, i.e. from 'MCP2apd' to
+        'MCP2peaks'. If None, the function returns the input mnemonic.
+
+    Returns
+    -------
+    mnemonics: list of str
+        the mnemonics to process
+    """
+    if func is None:
+        def func(x):
+            return x
+
+    if detector == 'BAM':
+        det_mnemos = [m for m in _mnemonics if 'BAM' in m]
+        default_mnemo = 'BAM1932M'
+        default_processed = 'BAM1932M'
+    if detector == 'XGM':
+        det_mnemos = ['XTD10_XGM', 'XTD10_XGM_sigma', 'XTD10_SA3',
+                      'XTD10_SA3_sigma', 'XTD10_SA1', 'XTD10_SA1_sigma',
+                      'SCS_XGM', 'SCS_XGM_sigma', 'SCS_SA1', 'SCS_SA1_sigma',
+                      'SCS_SA3', 'SCS_SA3_sigma']
+        default_mnemo = 'SCS_SA3'
+        default_processed = 'SCS_SA3'
+    if detector == 'ADQ412':
+        det_mnemos = [m for m in _mnemonics if 'MCP' in m]
+        default_mnemo = 'MCP2apd'
+        default_processed = 'MCP2peaks'
+    if detector == 'FastADC':
+        det_mnemos = [m for m in _mnemonics if 'FastADC' in m]
+        default_mnemo = 'FastADC5raw'
+        default_processed = 'FastADC5peaks'
+
+    dig_dims = list(set([_mnemonics[m][0]['dim'][0] for m in det_mnemos]))
+    processed_mnemos = list(set([func(m) for m in det_mnemos]))
+
+    # create a list of mnemonics to process from the provided mnemonics and
+    # merge_with Dataset
+    mw_mnemos = []
+    mw_processed = []
+    if bool(merge_with):
+        mw_mnemos = [m for m in merge_with if m in det_mnemos and
+                     any(dim in merge_with[m].dims for dim in dig_dims)]
+        mw_processed = [m for m in merge_with if m in processed_mnemos and
+                        any(dim in merge_with[m].dims for dim in dig_dims)
+                        is False]
+    if mnemo_list is None:
+        mnemonics = []
+        if len(mw_mnemos) == 0 and default_processed not in mw_processed:
+            mnemonics = [default_mnemo]
+    else:
+        mnemonics = [mnemo_list] if isinstance(mnemo_list, str) else mnemo_list
+    mnemonics = list(set(mnemonics + mw_mnemos))
+    for m in mnemonics[:]:
+        if func(m) in mw_processed:
+            mnemonics.remove(m)
+
+    return mnemonics
-- 
GitLab