diff --git a/xgm.py b/xgm.py index 3ad8fd5c10a807815d4059344b6d9710d091a5ca..7289fc7af286fb5933edddb22f5507e2ce74d3a5 100644 --- a/xgm.py +++ b/xgm.py @@ -814,7 +814,8 @@ def matchXgmTimPulseId(data, use_apd=True, intstart=None, intstop=None, # Fast ADC -def fastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop, period=None, npulses=None, usePeakValue=False): +def fastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop, + period=None, npulses=None, usePeakValue=False, peakType='pos'): ''' Computes peak integration from raw FastADC traces. Inputs: @@ -831,6 +832,8 @@ def fastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop, period=Non two bunches @ 4.5 MHz. npulses: number of pulses. If None, takes the maximum number of pulses according to the bunch patter (field 'npulses_sase3') + usePeakValue: bool, if True takes the peak value of the signal, + otherwise integrates over integration region. Output: results: DataArray with dims trainId x max(sase3 pulses) @@ -860,27 +863,30 @@ def fastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop, period=Non bkgb = bkgstop + period*i bg = np.outer(np.median(data[keyraw][:,bkga:bkgb], axis=1), np.ones(b-a)) if usePeakValue: - val = np.max(data[keyraw][:,a:b] - bg, axis=1) + if peakType=='pos': + val = np.max(data[keyraw][:,a:b] - bg, axis=1) + if peakType=='neg': + val = np.min(data[keyraw][:,a:b] - bg, axis=1) else: val = np.trapz(data[keyraw][:,a:b] - bg, axis=1) results[:,i] = val return results -def autoFindFastAdcPeaks(data, channel=5, threshold=35000, usePeakValue=False, +def autoFindFastAdcPeaks(data, channel=5, window='small', usePeakValue=False, display=False, plot=False): - ''' Automatically finds positive peaks in channel of Fast ADC trace, assuming - a minimum absolute height of 'threshold' counts and a minimum width of 4 - samples. The find_peaks function and determination of the peak region and - baseline subtraction is optimized for typical photodiode signals of the - SCS instrument (ILH, FFT reflectometer, FFT diag stage). + ''' Automatically finds peaks in channel of Fast ADC trace, a minimum width of 4 + samples. The find_peaks function and determination of the peak integration + region and baseline subtraction is optimized for typical photodiode signals + of the SCS instrument (ILH, FFT reflectometer, FFT diag stage). Inputs: data: xarray Dataset containing Fast ADC traces key: data key of the array of traces - threshold: minimum height of the peaks + window: 'small' or 'large': defines the width of the integration region + centered on the peak. usePeakValue: bool, if True takes the peak value of the signal, otherwise integrates over integration region. display: bool, displays info on the pulses found - plot: plots regions of integration of the first pulse in the trace + plot: bool, plots regions of integration of the first pulse in the trace Output: peaks: DataArray of the integrated peaks ''' @@ -888,26 +894,45 @@ def autoFindFastAdcPeaks(data, channel=5, threshold=35000, usePeakValue=False, key = f'FastADC{channel}raw' if key not in data: raise ValueError(f'{key} not found in data set') - tid = data[key].where(data[key]>threshold, drop=True).trainId[0] - trace = data[key].sel(trainId=tid) + #average over the 100 first traces to get at least one train with signal + trace = data[key].isel(trainId=slice(0,100)).mean(dim='trainId').values + if plot: + trace_plot = np.copy(trace) + #subtract baseline and check if peaks are positive or negative + bl = np.median(trace) + trace_no_bl = trace - bl + if np.max(trace_no_bl) >= np.abs(np.min(trace_no_bl)): + posNeg = 'positive' + else: + posNeg = 'negative' + trace_no_bl *= -1 + trace = bl + trace_no_bl + threshold = bl + np.max(trace_no_bl) / 2 + #find peaks centers, peaks = find_peaks(trace, height=threshold, width=(4, None)) c = centers[0] w = np.average(peaks['widths']).astype(int) period = np.median(np.diff(centers)).astype(int) npulses = centers.shape[0] - intstart = int(c - w/4) + 1 - intstop = int(c + w/4) + 1 + if window not in ['small', 'large']: + raise ValueError(f"'window argument should be either 'small' or 'large', not {window}") + if window=='small': + intstart = int(c - w/4) + 1 + intstop = int(c + w/4) + 1 + if window=='large': + intstart = int(peaks['left_ips'][0]) + intstop = int(peaks['right_ips'][0]) + w bkgstop = int(peaks['left_ips'][0])-5 bkgstart = bkgstop - 10 if display: - print(f'Found {npulses} pulses, avg. width={w}, period={period} samples, ' + + print(f'Found {npulses} {posNeg} pulses, avg. width={w}, period={period} samples, ' + f'rep. rate={1e6/(9.230769*period):.3f} kHz') fAdcPeaks = fastAdcPeaks(data, channel=channel, intstart=intstart, intstop=intstop, - bkgstart=bkgstart, bkgstop=bkgstop, period=period, - npulses=npulses, usePeakValue=usePeakValue) + bkgstart=bkgstart, bkgstop=bkgstop, period=period, npulses=npulses, + usePeakValue=usePeakValue, peakType=posNeg[:3]) if plot: plt.figure() - plt.plot(trace, 'o-', ms=3) + plt.plot(trace_plot, 'o-', ms=3) for i in range(npulses): plt.axvline(intstart+i*period, ls='--', color='g') plt.axvline(intstop+i*period, ls='--', color='r')