diff --git a/src/toolbox_scs/constants.py b/src/toolbox_scs/constants.py index 0f521b44a5fedd80a2c9e3f6fbbf9dedf23a03d1..12a9b7ea0fd29cbd5132f999b99c3e7e19b4f34e 100644 --- a/src/toolbox_scs/constants.py +++ b/src/toolbox_scs/constants.py @@ -626,7 +626,10 @@ mnemonics = { "FFT_SAM_Z_ENC": ({'source': 'SCS_CDIFFT_MOV/ENC/SAM_Z', 'key': 'value.value', 'dim': None},), - "magnet": ({'source': 'SCS_CDIFFT_MAG/ASENS/PSU_CMON', + "magnet": ({'source': 'SCS_CDIFFT_MAG/MDL/FIELD', + 'key': 'actualPosition.value', + 'dim': None},), + "magnet_current": ({'source': 'SCS_CDIFFT_MAG/ASENS/PSU_CMON', 'key': 'value.value', 'dim': None}, {'source': 'SCS_CDIFFT_MAG/ASENS/CURRENT', diff --git a/src/toolbox_scs/detectors/viking.py b/src/toolbox_scs/detectors/viking.py index 6372881ada19dfaa3228c1bdd565d8a030e1d3f7..fe62261dd5e3951a993e13d20b778d00fbd2830c 100644 --- a/src/toolbox_scs/detectors/viking.py +++ b/src/toolbox_scs/detectors/viking.py @@ -138,7 +138,7 @@ class Viking: 'use_dark', 'bl_poly_deg', 'bl_signal_range', 'fields') return {param: getattr(self, param.upper()) for param in params} - def from_run(self, runNB, add_attrs=True): + def from_run(self, runNB, add_attrs=True, tid_offset=-1): """load a run Load the run `runNB`. A thin wrapper around `toolbox_scs.load`. @@ -150,6 +150,8 @@ class Viking: add_attrs: bool if True, adds the camera parameters as attributes to the dataset (see get_camera_params()) + tid_offset: int + train Id offset of Newton camera Output ------ @@ -165,11 +167,20 @@ class Viking: data2 = v.from_run(155) # load run 155 data = xarray.concat([data1, data2], 'trainId') # combine both """ + #separately load newton image and deal with trainId mismatch roi = {'newton': {'newton': {'roi': (self.Y_RANGE, self.X_RANGE), 'dim': ['newt_y', 'newt_x']}}} - run, data = tb.load(self.PROPOSAL, runNB, - fields=self.FIELDS, rois=roi) - data['newton'] = data['newton'].astype(float) + run, newton = tb.load(self.PROPOSAL, runNB, 'newton', rois=roi) + newton = newton.shift(trainId=tid_offset).astype(float) + + #load the rest + fields = [f for f in self.FIELDS if f != 'newton'] + if len(fields) == 0: + data = newton + else: + run, data = tb.load(self.PROPOSAL, runNB, + fields=fields) + data = data.merge(newton, join='inner') data = data.assign_coords(newt_x=np.polyval(self.ENERGY_CALIB, data['newt_x'])) if add_attrs: @@ -259,18 +270,24 @@ class Viking: 'endX': 'imageSpecifications.endX.value', 'startY': 'imageSpecifications.startY.value', 'endY': 'imageSpecifications.endY.value', - 'temperature': 'CoolerActual.temperature.value', + 'temperature': 'coolerActual.temperature.value', 'high_capacity': 'HighCapacity.value', 'exposure_s': 'exposureTime.value' } ret = {} - for k, v in dic.items(): - ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v) + try: + for k, v in dic.items(): + ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v) + except Exception as e: + print(e) + dic['temperature'] = 'CoolerActual.temperature.value' + for k, v in dic.items(): + ret[k] = run.get_run_value('SCS_EXP_NEWTON/CAM/CAMERA', v) ret['gain'] = self.get_camera_gain(run) ret['photoelectrons_per_count'] = self.e_per_counts(run, ret['gain']) return ret - def removePolyBaseline(self, data): + def removePolyBaseline(self, data, key='spectrum'): """ Removes a polynomial baseline to a spectrum, assuming a fixed position for the signal. @@ -279,6 +296,7 @@ class Viking: ---------- data: xarray Dataset The Viking data containing the variable "spectrum" + or given by argument key Output ------ @@ -287,10 +305,11 @@ class Viking: containing the baseline subtracted spectra. """ - if 'spectrum' not in data: + if key not in data: return x = data.newt_x - spectra = data['spectrum'] + spectra = data[key] + #print(x) mask = xr.ones_like(x, dtype=bool) if len(self.BL_SIGNAL_RANGE) > 0: if not hasattr(self.BL_SIGNAL_RANGE[0], '__len__'): @@ -299,18 +318,22 @@ class Viking: ranges = self.BL_SIGNAL_RANGE for xrange in ranges: mask = mask & ((x < xrange[0]) | (x > xrange[1])) - x_bl = x.where(mask, drop=True) + x_bl = x.where(mask, drop=True).astype(x.dtype) bl = spectra.sel(newt_x=x_bl) + #print(mask) + #print(x_bl) + #print(bl) fit = np.polyfit(x_bl, bl.T, self.BL_POLY_DEG) if len(spectra.shape) == 1: return spectra - np.polyval(fit, x) final_bl = np.empty(spectra.shape) for t in range(spectra.shape[0]): final_bl[t] = np.polyval(fit[:, t], x) - data['spectrum_nobl'] = spectra - final_bl + data[key+'_nobl'] = spectra - final_bl return data - - def xas(self, data, data_ref, thickness=1, plot=False, + + + def xas(self, sam, ref, thickness=1, dim='newt_x', plot=False, plot_errors=True, xas_ylim=(-1, 3)): """ Given two independent datasets (one with sample and one reference), @@ -320,13 +343,15 @@ class Viking: Parameters ---------- - data: xarray Dataset - the dataset containing the spectra with sample - data_ref: xarray Dataset - the dataset containing the spectra without sample + sam: xarray DataArray + the data array containing the spectra with sample + ref: xarray DataArray + the data array containing the spectra without sample thickness: float the thickness used for the calculation of the absorption coefficient + dim: string + the name of the dimension along the dispersion axis plot: bool If True, plot the resulting average spectra. plot_errors: bool @@ -341,15 +366,14 @@ class Viking: I0, It, absorptionCoef and their associated errors. """ - key = 'spectrum_nobl' if 'spectrum_nobl' in data else 'spectrum' - if data['newt_x'].equals(data_ref['newt_x']) is False: + if sam[dim].equals(ref[dim]) is False: return - spectrum = data[key].mean(dim='trainId') - std = data[key].std(dim='trainId') - std_err = std / np.sqrt(data.sizes['trainId']) - spectrum_ref = data_ref[key].mean(dim='trainId') - std_ref = data_ref[key].std(dim='trainId') - std_err_ref = std_ref / np.sqrt(data_ref.sizes['trainId']) + spectrum = sam.mean(dim='trainId') + std = sam.std(dim='trainId') + std_err = std / np.sqrt(sam.sizes['trainId']) + spectrum_ref = ref.mean(dim='trainId') + std_ref = ref.std(dim='trainId') + std_err_ref = std_ref / np.sqrt(ref.sizes['trainId']) ds = xr.Dataset() ds['It'] = spectrum @@ -369,14 +393,15 @@ class Viking: np.abs(absorption)) ds['absorptionCoef_stderr'] = absorption_stderr / (thickness * np.abs(absorption)) - ds.attrs['n_It'] = data[key].sizes['trainId'] - ds.attrs['n_I0'] = data_ref[key].sizes['trainId'] + ds.attrs['n_It'] = sam.sizes['trainId'] + ds.attrs['n_I0'] = ref.sizes['trainId'] if plot: plot_viking_xas(ds, plot_errors, xas_ylim) return ds - def calibrate(self, runList, plot=True): + + def calibrate(self, runList, source='nrj', order=2, xrange=slice(None,None), plot=True): """ This routine determines the calibration coefficients to translate the camera pixels into energy in eV. The Viking spectrometer is calibrated @@ -398,6 +423,7 @@ class Viking: energy_calib: np.array the calibration coefficients (2nd degree polynomial) """ + old_calib = self.ENERGY_CALIB self.ENERGY_CALIB = [0, 1, 0] x_pos = [] nrj = [] @@ -407,11 +433,16 @@ class Viking: for i, runNB in enumerate(runList): if plot: print(runNB) + xrange0 = self.X_RANGE + self.X_RANGE=xrange ds = self.from_run(runNB) self.integrate(ds) - avg_spectrum = ds['spectrum'].mean(dim='trainId') + ds = self.removePolyBaseline(ds) + avg_spectrum = ds['spectrum_nobl'].mean(dim='trainId') p0 = [np.max(avg_spectrum)-np.min(avg_spectrum), - avg_spectrum.argmax().values, 10, np.min(avg_spectrum)] + avg_spectrum['newt_x'][avg_spectrum.argmax()].values, + 10, np.min(avg_spectrum)] + eV_unit = 1e3 if 'UND' in source else 1 try: popt, pcov = curve_fit(gauss1d, avg_spectrum['newt_x'].values, avg_spectrum.values, p0=p0) @@ -419,17 +450,21 @@ class Viking: gaussian_fits.append(popt) spectra.append(avg_spectrum) runNBs.append(runNB) - nrj.append(tb.load_run_values(self.PROPOSAL, runNB)['nrj']) + nrj.append(tb.load_run_values(self.PROPOSAL, runNB)[source]*eV_unit) except Exception as e: print(f'error with run {runNB}:', e) + self.ENERGY_CALIB = old_calib + finally: + self.X_RANGE = xrange0 x_pos = np.array(x_pos) nrj = np.array(nrj) idx = np.argsort(x_pos) x_pos = x_pos[idx] nrj = nrj[idx] - energy_calib = np.polyfit(x_pos, nrj, 2) + energy_calib = np.polyfit(x_pos, nrj, order) if plot: plot_viking_calibration(spectra, x_pos, nrj, energy_calib, gaussian_fits, runNBs) self.ENERGY_CALIB = energy_calib + self.GAUSSIAN_FITS = gaussian_fits return energy_calib