diff --git a/src/toolbox_scs/detectors/hrixs.py b/src/toolbox_scs/detectors/hrixs.py index 22bdf3e3843e87c68aecd829b5cf1d7b8494dfe9..63bce3454083712d22df687637b8635ecd2fa699 100644 --- a/src/toolbox_scs/detectors/hrixs.py +++ b/src/toolbox_scs/detectors/hrixs.py @@ -171,64 +171,6 @@ THRESHOLD = 510 # pixel counts above which a hit candidate is assumed CURVE_A = 2.19042931e-02 # curvature parameters as determined elsewhere CURVE_B = -3.02191568e-07 - -def _esrf_centroid(image, threshold=THRESHOLD, curvature=(CURVE_A, CURVE_B)): - gs = 2 - base = image.mean() - cp = np.argwhere(image[gs // 2: -gs // 2, gs // 2: -gs // 2] > threshold) + np.array([gs // 2, gs // 2]) - if len(cp) > 100000: - raise RuntimeError('Threshold too low or acquisition time too long') - - res = [] - for cy, cx in cp: - spot = image[cy - gs // 2: cy + gs // 2 + 1, cx - gs // 2: cx + gs // 2 + 1] - base - spot[spot < 0] = 0 - if (spot > image[cy, cx]).sum() == 0: - mx = np.average(np.arange(cx - gs // 2, cx + gs // 2 + 1), weights=spot.sum(axis=0)) - my = np.average(np.arange(cy - gs // 2, cy + gs // 2 + 1), weights=spot.sum(axis=1)) - my -= (curvature[0] + curvature[1] * mx) * mx - res.append((my, mx)) - return res - - -def _new_centroid(image, threshold=THRESHOLD, std_threshold=3.5, curvature=(CURVE_A, CURVE_B)): - """find the position of photons with sub-pixel precision - - A photon is supposed to have hit the detector if the intensity within a - 2-by-2 square exceeds a threshold. In this case the position of the photon - is calculated as the center-of-mass in a 4-by-4 square. - - Return the list of x,y coordinate pairs, corrected by the curvature. - """ - base = image.mean() - corners = image[1:, 1:] + image[:-1, 1:] + image[1:, :-1] + image[:-1, :-1] - if threshold is None: - threshold = corners.mean() + std_threshold * corners.std() - middle = corners[1:-1, 1:-1] - candidates = ( - (middle > threshold) - * (middle >= corners[:-2, 1:-1]) * (middle > corners[2:, 1:-1]) - * (middle >= corners[1:-1, :-2]) * (middle > corners[1:-1, 2:]) - * (middle >= corners[:-2, :-2]) * (middle > corners[2:, :-2]) - * (middle >= corners[:-2, 2:]) * (middle > corners[2:, 2:])) - cp = np.argwhere(candidates) - if len(cp) > 10000: - raise RuntimeError( - "too many peaks, threshold too low or acquisition time too high") - - res = [] - for cy, cx in cp: - spot = image[cy: cy + 4, cx: cx + 4] - base - mx = np.average(np.arange(cx, cx + 4), weights=spot.sum(axis=0)) - my = np.average(np.arange(cy, cy + 4), weights=spot.sum(axis=1)) - my -= (curvature[0] + curvature[1] * mx) * mx - res.append((my, mx)) - return res - - -centroid = _new_centroid - - def decentroid(res): res = np.array(res) ret = np.zeros(shape=(res.max(axis=0) + 1).astype(int)) @@ -410,6 +352,42 @@ class hRIXS: self.CURVE_B, self.CURVE_A, *_ = args return self.CURVE_A, self.CURVE_B + def centroid_one(self, image): + """find the position of photons with sub-pixel precision + + A photon is supposed to have hit the detector if the intensity within a + 2-by-2 square exceeds a threshold. In this case the position of the photon + is calculated as the center-of-mass in a 4-by-4 square. + + Return the list of x, y coordinate pairs, corrected by the curvature. + """ + base = image.mean() + corners = image[1:, 1:] + image[:-1, 1:] \ + + image[1:, :-1] + image[:-1, :-1] + if self.THRESHOLD is None: + threshold = corners.mean() + self.STD_THRESHOLD * corners.std() + else: + threshold = self.THRESHOLD + middle = corners[1:-1, 1:-1] + candidates = ( + (middle > threshold) + * (middle >= corners[:-2, 1:-1]) * (middle > corners[2:, 1:-1]) + * (middle >= corners[1:-1, :-2]) * (middle > corners[1:-1, 2:]) + * (middle >= corners[:-2, :-2]) * (middle > corners[2:, :-2]) + * (middle >= corners[:-2, 2:]) * (middle > corners[2:, 2:])) + cp = np.argwhere(candidates) + if len(cp) > 10000: + raise RuntimeError( + "too many peaks, threshold low or acquisition time too high") + + res = [] + for cy, cx in cp: + spot = image[cy: cy + 4, cx: cx + 4] - base + mx = np.average(np.arange(cx, cx + 4), weights=spot.sum(axis=0)) + my = np.average(np.arange(cy, cy + 4), weights=spot.sum(axis=1)) + res.append((mx, my)) + return res + def centroid(self, data, bins=None): """calculate a spectrum by finding the centroid of individual photons @@ -427,23 +405,20 @@ class hRIXS: bins = self.BINS ret = np.zeros((len(data["hRIXS_det"]), bins)) for image, r in zip(data["hRIXS_det"], ret): - c = centroid( - image.values[self.X_RANGE, self.Y_RANGE].T, - threshold=self.THRESHOLD, - std_threshold=self.STD_THRESHOLD, - curvature=(self.CURVE_A, self.CURVE_B)) + c = self.centroid_one( + image.values[self.X_RANGE, self.Y_RANGE]) if not len(c): continue rc = np.array(c) - hy, hx = np.histogram( - rc[:, 0], bins=bins, - range=(0, self.Y_RANGE.stop - self.Y_RANGE.start)) - r[:] = hy + r[:], _ = np.histogram( + rc[:, 0] - self.parabola(rc[:, 1]), + bins=bins, range=(0, self.Y_RANGE.stop - self.Y_RANGE.start)) - data = data.assign_coords( - energy=np.linspace(self.Y_RANGE.start, self.Y_RANGE.stop, bins) + data.coords["energy"] = ( + np.linspace(self.Y_RANGE.start, self.Y_RANGE.stop, bins) * self.ENERGY_SLOPE + self.ENERGY_INTERCEPT) - return data.assign(spectrum=(("trainId", "energy"), ret)) + data['spectrum'] = (("trainId", "energy"), ret) + return data def parabola(self, x): return (self.CURVE_B * x + self.CURVE_A) * x