diff --git a/src/toolbox_scs/detectors/hrixs.py b/src/toolbox_scs/detectors/hrixs.py index 217c4e91125b3d43cdce0fd0d1ede36d653e16db..31f6984f3b653e470d53e4130c9c19a682d192c4 100644 --- a/src/toolbox_scs/detectors/hrixs.py +++ b/src/toolbox_scs/detectors/hrixs.py @@ -302,6 +302,13 @@ class hRIXS: DARK_MASK_THRESHOLD = 100 MASK_AVG_X = np.s_[1850:2000] MASK_AVG_Y = np.s_[500:1500] + + # Early energy calibration from runs 31-36 (to estimate mono drift) + PIX2EV_POLY = [6.31196512e-02, 6.05502748e+02] + # Width of fit window to calculate hv (estimated mono ± this) + HV_FIT_DELTA = 30 + # Gaussian fit parameters for elastic line finding + HV_FIT_SIGMA = 2 ENERGY_INTERCEPT = 0 ENERGY_SLOPE = 1 @@ -319,6 +326,23 @@ class hRIXS: 'factor', 'range', 'bins', 'method', 'fields') return {param: getattr(self, param.upper()) for param in params} + + def pixel2energy(self, pixel): + # Calculates energy based on pixel position from PIX2EV_POLY (re-fit as needed). + return np.polyval(self.PIX2EV_POLY, pixel) + + def energy2pixel(self, ev): + # Calculates the expected pixel position of a given energy. + # Only works (somewhat) predictably for 1st and 2nd order polynomials! + if len(self.PIX2EV_POLY)>3: + # The length of PIX2EV_POLY is order+1 + raise ValueError('Too high polynomial order!') + epoly = np.poly1d(self.PIX2EV_POLY) + pixel = (epoly-ev).roots[-1] + if np.imag(pixel) == 0: + return pixel + else: + raise ValueError('Complex root! (Out of fit bounds?)') def from_run(self, runNB, proposal=None, extra_fields=()): if proposal is None: @@ -393,7 +417,8 @@ class hRIXS: return self.CURVE_A, self.CURVE_B - def centroid(self, data, bins=None, return_hits=False): + def centroid(self, data, bins=None, return_hits=False, fit_elastic=False, + hv=None, fit_delta=None): #************************************************************* # Carry out hit finding on data and bin them in grid # Allows for @@ -416,10 +441,30 @@ class hRIXS: hit_y = [] hits = [] ret = np.zeros((len(data["hRIXS_det"]), bins)) + #************************************************************* + # If the 'actual' photon energy is desired, we'll need to know + # where to start looking for the elastic line + #************************************************************* + if fit_elastic: + elastic_pixel = np.zeros(len(data["hRIXS_det"])) + found_hv = np.zeros(len(data["hRIXS_det"])) + if fit_delta == None: + fit_delta = self.HV_FIT_DELTA + if hv == None: + # ?? We'll make a guess later + hv = -1 * np.ones(len(data["hRIXS_det"])) + else: + # hv is given as one value or a train-vector + if type(hv) == type([]): + if len(hv) != len(data["hRIXS_det"]): + raise ValueError("Size of hv vector doesn't match trainID") + else: + hv = hv * np.ones(len(data["hRIXS_det"])) + #************************************************************* # Handle each Aq image separately #************************************************************* - for image, r in zip(data["hRIXS_det"], ret): + for i, (image, r) in enumerate(zip(data["hRIXS_det"], ret)): use_image = image.to_numpy() #************************************************************* # Treat background by optionally @@ -473,6 +518,25 @@ class hRIXS: rc[:, 0], bins=bins, range=(0, self.Y_RANGE.stop - self.Y_RANGE.start)) r[:] = hy + #************************************************************* + # Return the found elastic peak energy, if requested + #************************************************************* + if fit_elastic: + if hv[i] == -1: + # Assume elastic line to be the strongest peak + gx = np.where(hy == max(hy))[0][0] + else: + # Use given guess for where it is + gx = np.where(hx + self.Y_RANGE.start > self.energy2pixel(hv[i]))[0][0] + popt, pcov = curve_fit(gauss1d, hx[gx-fit_delta:gx+fit_delta], + hy[gx-fit_delta:gx+fit_delta], + p0 = [max(hx[gx-fit_delta:gx+fit_delta]), + hx[gx], self.HV_FIT_SIGMA, 0], + bounds=([0, 0, 0, -np.Inf],[np.Inf, np.Inf, 100, np.Inf])) + + elastic_pixel[i] = popt[1]+ self.Y_RANGE.start + found_hv[i] = self.pixel2energy(popt[1]+ self.Y_RANGE.start) + #************************************************************* # Setup and assing a linear energy grid #************************************************************* @@ -487,6 +551,12 @@ class hRIXS: xhits=(("trainId"), hit_x), yhits=(("trainId"), hit_y)) #********************************************** + # If hv was fitted, return it + #********************************************** + if fit_elastic: + data = data.assign(fitted_hv = (("trainId"), found_hv), + elastic_pixel = (("trainId"), elastic_pixel)) + #********************************************** # Always assign the spectrum to data #********************************************** data = data.assign(spectrum=(("trainId", "energy"), ret))