From f5ad640ddcaad8ebc4be74ed61946e71949433f3 Mon Sep 17 00:00:00 2001
From: Cammille Carinan <cammille.carinan@xfel.eu>
Date: Mon, 7 Feb 2022 16:18:26 +0100
Subject: [PATCH] Add hRIXS functions

---
 src/toolbox_scs/constants.py       |  18 ++++
 src/toolbox_scs/detectors/hrixs.py | 133 +++++++++++++++++++++++++++++
 2 files changed, 151 insertions(+)
 create mode 100644 src/toolbox_scs/detectors/hrixs.py

diff --git a/src/toolbox_scs/constants.py b/src/toolbox_scs/constants.py
index bc412c2..8c70dd5 100644
--- a/src/toolbox_scs/constants.py
+++ b/src/toolbox_scs/constants.py
@@ -66,6 +66,18 @@ mnemonics = {
     "M2BEND": ({'source': 'SA3_XTD10_MIRR-2/MOTOR/BENDER',
                 'key': 'actualPosition.value',
                 'dim': None},),
+    "hRIXS_det": ({'source': 'SCS_HRIXS_DET/CAM/CAMERA:daqOutput',
+                   'key': 'data.image.pixels',
+                   'dim': ['x', 'y']},),
+    "chem_X": ({'source': 'SCS_CHEM_JET/MOTOR/MANA_X',
+                'key': 'actualPosition.value',
+                'dim': None},),
+    "chem_Y": ({'source': 'SCS_CHEM_JET/MOTOR/MANA_Y',
+                'key': 'actualPosition.value',
+                'dim': None},),
+    "chem_Z": ({'source': 'SCS_CHEM_JET/MOTOR/MANA_Z',
+                'key': 'actualPosition.value',
+                'dim': None},),
     "VSLIT": ({'source': 'SA3_XTD10_VSLIT/MDL/BLADE',
                'key': 'actualGap.value',
                'dim': None},),
@@ -75,6 +87,12 @@ mnemonics = {
     "HSLIT": ({'source': 'SCS_XTD10_HSLIT/MDL/BLADE',
                'key': 'actualGap.value',
                'dim': None},),
+    "H_BLADE_LEFT": ({'source': 'SCS_XTD10_HSLIT/MOTOR/BLADE_LEFT',
+                      'key': 'actualPosition.value',
+                      'dim': None},),
+    "H_BLADE_RIGHT": ({'source': 'SCS_XTD10_HSLIT/MOTOR/BLADE_RIGHT',
+                       'key': 'actualPosition.value',
+                       'dim': None},),
     "transmission": ({'source': 'SA3_XTD10_VAC/MDL/GATT_TRANSMISSION_MONITOR',
                       'key': 'Estimated_Tr.value',
                       'dim': None},
diff --git a/src/toolbox_scs/detectors/hrixs.py b/src/toolbox_scs/detectors/hrixs.py
new file mode 100644
index 0000000..a66483d
--- /dev/null
+++ b/src/toolbox_scs/detectors/hrixs.py
@@ -0,0 +1,133 @@
+import numpy as np
+from scipy.optimize import curve_fit
+from scipy.signal import fftconvolve
+
+
+# -----------------------------------------------------------------------------
+# Curvature
+
+def find_curvature(image, frangex=None, frangey=None,
+                   deg=2, axis=1, offset=100):
+    # Resolve arguments
+    x_range = (0, image.shape[1])
+    if frangex is not None:
+        x_range = (max(frangex[0], x_range[0]), min(frangex[1], x_range[1]))
+    y_range = (0, image.shape[0])
+    if frangex is not None:
+        y_range = (max(frangey[0], y_range[0]), min(frangey[1], y_range[1]))
+
+    axis_range = y_range if axis == 1 else x_range
+    axis_dim = image.shape[axis - 1]
+
+    # Get kernel
+    integral = image[slice(*y_range), slice(*x_range)].mean(axis=axis)
+    roi = np.ones([axis_range[1] - axis_range[0], axis_dim])
+    ref = roi * integral[:, np.newaxis]
+
+    # Get sliced image
+    slice_ = [slice(None), slice(None)]
+    slice_[axis - 1] = slice(max(axis_range[0] - offset, 0),
+                             min(axis_range[1] + offset, axis_dim))
+    sliced = image[tuple(slice_)]
+    if axis == 0:
+        sliced = sliced.T
+
+    # Get curvature factor from cross correlation
+    crosscorr = fftconvolve(sliced,
+                            ref[::-1, :],
+                            axes=0, )
+    shifts = np.argmax(crosscorr, axis=0)
+    curv = np.polyfit(np.arange(axis_dim), shifts, deg=deg)
+    return curv[:-1][::-1]
+
+
+def correct_curvature(image, factor=None, axis=1):
+    if factor is None:
+        return
+
+    if axis == 1:
+        image = image.T
+
+    ydim, xdim = image.shape
+    x = np.arange(xdim + 1)
+    y = np.arange(ydim + 1)
+    xx, yy = np.meshgrid(x[:-1] + 0.5, y[:-1] + 0.5)
+    xxn = xx - factor[0] * yy - factor[1] * yy ** 2
+    ret = np.histogramdd((xxn.flatten(), yy.flatten()),
+                         bins=[x, y],
+                         weights=image.flatten())[0]
+
+    return ret if axis == 1 else ret.T
+
+
+def get_spectrum(image, cal_factor=None, axis=0,
+                 pixel_range=None, energy_range=None, ):
+    start, stop = (0, image.shape[axis - 1])
+    if pixel_range is not None:
+        start = max(pixel_range[0] or start, start)
+        stop = min(pixel_range[1] or stop, stop)
+
+    edge = image.sum(axis=axis)[start:stop]
+    bins = np.arange(start, stop + 1)
+    centers = (bins[1:] + bins[:-1]) * 0.5
+    if cal_factor is not None:
+        centers, edge = calibrate(centers, edge,
+                                  factor=cal_factor,
+                                  range_=energy_range)
+
+    return centers, edge
+
+
+# -----------------------------------------------------------------------------
+# Energy calibration
+
+
+def energy_calibration(channels, energies):
+    return np.polyfit(channels, energies, deg=1)
+
+
+def calibrate(x, y=None, factor=None, range_=None):
+    if factor is not None:
+        x = np.polyval(factor, x)
+
+    if y is not None and range_ is not None:
+        start = np.argmin(np.abs((x - range_[0])))
+        stop = np.argmin(np.abs((x - range_[1])))
+        # Calibrated energies have a different direction
+        x, y = x[stop:start], y[stop:start]
+
+    return x, y
+
+
+# -----------------------------------------------------------------------------
+# Gaussian-related functions
+
+
+FWHM_COEFF = 2 * np.sqrt(2 * np.log(2))
+
+
+def gaussian_fit(x_data, y_data, offset=0):
+    """
+    Centre-of-mass and width. Lifted from image_processing.imageCentreofMass()
+    """
+
+    x0 = np.average(x_data, weights=y_data)
+    sx = np.sqrt(np.average((x_data - x0) ** 2, weights=y_data))
+
+    # Gaussian fit
+    baseline = y_data.min()
+    p_0 = (y_data.max(), x0 + offset, sx, baseline)
+    try:
+        p_f, _ = curve_fit(gauss1d, x_data, y_data, p_0, maxfev=10000)
+        return p_f
+    except (RuntimeError, TypeError) as e:
+        print(e)
+        return None
+
+
+def gauss1d(x, height, x0, sigma, offset):
+    return height * np.exp(-0.5 * ((x - x0) / sigma) ** 2) + offset
+
+
+def to_fwhm(sigma):
+    return abs(sigma * FWHM_COEFF)
-- 
GitLab