From f5ad640ddcaad8ebc4be74ed61946e71949433f3 Mon Sep 17 00:00:00 2001 From: Cammille Carinan <cammille.carinan@xfel.eu> Date: Mon, 7 Feb 2022 16:18:26 +0100 Subject: [PATCH] Add hRIXS functions --- src/toolbox_scs/constants.py | 18 ++++ src/toolbox_scs/detectors/hrixs.py | 133 +++++++++++++++++++++++++++++ 2 files changed, 151 insertions(+) create mode 100644 src/toolbox_scs/detectors/hrixs.py diff --git a/src/toolbox_scs/constants.py b/src/toolbox_scs/constants.py index bc412c2..8c70dd5 100644 --- a/src/toolbox_scs/constants.py +++ b/src/toolbox_scs/constants.py @@ -66,6 +66,18 @@ mnemonics = { "M2BEND": ({'source': 'SA3_XTD10_MIRR-2/MOTOR/BENDER', 'key': 'actualPosition.value', 'dim': None},), + "hRIXS_det": ({'source': 'SCS_HRIXS_DET/CAM/CAMERA:daqOutput', + 'key': 'data.image.pixels', + 'dim': ['x', 'y']},), + "chem_X": ({'source': 'SCS_CHEM_JET/MOTOR/MANA_X', + 'key': 'actualPosition.value', + 'dim': None},), + "chem_Y": ({'source': 'SCS_CHEM_JET/MOTOR/MANA_Y', + 'key': 'actualPosition.value', + 'dim': None},), + "chem_Z": ({'source': 'SCS_CHEM_JET/MOTOR/MANA_Z', + 'key': 'actualPosition.value', + 'dim': None},), "VSLIT": ({'source': 'SA3_XTD10_VSLIT/MDL/BLADE', 'key': 'actualGap.value', 'dim': None},), @@ -75,6 +87,12 @@ mnemonics = { "HSLIT": ({'source': 'SCS_XTD10_HSLIT/MDL/BLADE', 'key': 'actualGap.value', 'dim': None},), + "H_BLADE_LEFT": ({'source': 'SCS_XTD10_HSLIT/MOTOR/BLADE_LEFT', + 'key': 'actualPosition.value', + 'dim': None},), + "H_BLADE_RIGHT": ({'source': 'SCS_XTD10_HSLIT/MOTOR/BLADE_RIGHT', + 'key': 'actualPosition.value', + 'dim': None},), "transmission": ({'source': 'SA3_XTD10_VAC/MDL/GATT_TRANSMISSION_MONITOR', 'key': 'Estimated_Tr.value', 'dim': None}, diff --git a/src/toolbox_scs/detectors/hrixs.py b/src/toolbox_scs/detectors/hrixs.py new file mode 100644 index 0000000..a66483d --- /dev/null +++ b/src/toolbox_scs/detectors/hrixs.py @@ -0,0 +1,133 @@ +import numpy as np +from scipy.optimize import curve_fit +from scipy.signal import fftconvolve + + +# ----------------------------------------------------------------------------- +# Curvature + +def find_curvature(image, frangex=None, frangey=None, + deg=2, axis=1, offset=100): + # Resolve arguments + x_range = (0, image.shape[1]) + if frangex is not None: + x_range = (max(frangex[0], x_range[0]), min(frangex[1], x_range[1])) + y_range = (0, image.shape[0]) + if frangex is not None: + y_range = (max(frangey[0], y_range[0]), min(frangey[1], y_range[1])) + + axis_range = y_range if axis == 1 else x_range + axis_dim = image.shape[axis - 1] + + # Get kernel + integral = image[slice(*y_range), slice(*x_range)].mean(axis=axis) + roi = np.ones([axis_range[1] - axis_range[0], axis_dim]) + ref = roi * integral[:, np.newaxis] + + # Get sliced image + slice_ = [slice(None), slice(None)] + slice_[axis - 1] = slice(max(axis_range[0] - offset, 0), + min(axis_range[1] + offset, axis_dim)) + sliced = image[tuple(slice_)] + if axis == 0: + sliced = sliced.T + + # Get curvature factor from cross correlation + crosscorr = fftconvolve(sliced, + ref[::-1, :], + axes=0, ) + shifts = np.argmax(crosscorr, axis=0) + curv = np.polyfit(np.arange(axis_dim), shifts, deg=deg) + return curv[:-1][::-1] + + +def correct_curvature(image, factor=None, axis=1): + if factor is None: + return + + if axis == 1: + image = image.T + + ydim, xdim = image.shape + x = np.arange(xdim + 1) + y = np.arange(ydim + 1) + xx, yy = np.meshgrid(x[:-1] + 0.5, y[:-1] + 0.5) + xxn = xx - factor[0] * yy - factor[1] * yy ** 2 + ret = np.histogramdd((xxn.flatten(), yy.flatten()), + bins=[x, y], + weights=image.flatten())[0] + + return ret if axis == 1 else ret.T + + +def get_spectrum(image, cal_factor=None, axis=0, + pixel_range=None, energy_range=None, ): + start, stop = (0, image.shape[axis - 1]) + if pixel_range is not None: + start = max(pixel_range[0] or start, start) + stop = min(pixel_range[1] or stop, stop) + + edge = image.sum(axis=axis)[start:stop] + bins = np.arange(start, stop + 1) + centers = (bins[1:] + bins[:-1]) * 0.5 + if cal_factor is not None: + centers, edge = calibrate(centers, edge, + factor=cal_factor, + range_=energy_range) + + return centers, edge + + +# ----------------------------------------------------------------------------- +# Energy calibration + + +def energy_calibration(channels, energies): + return np.polyfit(channels, energies, deg=1) + + +def calibrate(x, y=None, factor=None, range_=None): + if factor is not None: + x = np.polyval(factor, x) + + if y is not None and range_ is not None: + start = np.argmin(np.abs((x - range_[0]))) + stop = np.argmin(np.abs((x - range_[1]))) + # Calibrated energies have a different direction + x, y = x[stop:start], y[stop:start] + + return x, y + + +# ----------------------------------------------------------------------------- +# Gaussian-related functions + + +FWHM_COEFF = 2 * np.sqrt(2 * np.log(2)) + + +def gaussian_fit(x_data, y_data, offset=0): + """ + Centre-of-mass and width. Lifted from image_processing.imageCentreofMass() + """ + + x0 = np.average(x_data, weights=y_data) + sx = np.sqrt(np.average((x_data - x0) ** 2, weights=y_data)) + + # Gaussian fit + baseline = y_data.min() + p_0 = (y_data.max(), x0 + offset, sx, baseline) + try: + p_f, _ = curve_fit(gauss1d, x_data, y_data, p_0, maxfev=10000) + return p_f + except (RuntimeError, TypeError) as e: + print(e) + return None + + +def gauss1d(x, height, x0, sigma, offset): + return height * np.exp(-0.5 * ((x - x0) / sigma) ** 2) + offset + + +def to_fwhm(sigma): + return abs(sigma * FWHM_COEFF) -- GitLab