Basic principle
===============

In a DSSC binner object we basically define maps, here called 'binners'. They define into which bucket a value along a certain dimension will be put into.

map: coordinate array along specified dimension -> array of buckets


Example 1
=========

Bin static run
~~~~~~~~~~~~~~

.. code:: ipython3

    import os
    import logging
    import importlib
    
    import numpy as np
    import xarray as xr
    import pandas as pd
    
    import extra_data as ed
    import toolbox_scs as tb
    import toolbox_scs.detectors as tbdet
    import toolbox_scs.detectors.dssc_plot as dssc_plot

    #logging.basicConfig(level=logging.INFO)

.. code:: ipython3

    # run settings
    proposal_nb = 2711
    run_nb = 97

.. code:: ipython3

    # create a extra_data run object and collect detector information
    run = tb.load_run(proposal_nb, run_nb)
    dssc_info = tbdet.load_dssc_info(proposal_nb, run_nb)

.. code:: ipython3

    # create toolbox bin object
    bin_obj = tbdet.DSSCBinner(proposal_nb, run_nb)

.. code:: ipython3

    # create array that will map the pulse dimension into 
    # buckets 'image' and 'dark'  -> resulting dimension length = 2
    buckets_pulse = ['image', 'dark'] * 30 # put all 60 pulses into buckets image and dark
    
    
    # create array that will map the trainId dimension into 
    # buckets [0]  -> resulting dimension length = 1
    buckets_train = np.zeros(len(run.train_ids)).astype(int) # put all train Ids to the same bucket called 0.

.. code:: ipython3

    #create binners (xarray data arrays that basically act as a map)
    fpt = dssc_info['frames_per_train']
    binnertrain = tbdet.create_dssc_bins("trainId",run.train_ids,buckets_train)
    binnerpulse = tbdet.create_dssc_bins("pulse",np.linspace(0,fpt-1,fpt, dtype=int),buckets_pulse)


.. code:: ipython3

    # add binners to bin object
    bin_obj.add_binner('trainId', binnertrain)
    bin_obj.add_binner('pulse', binnerpulse)

.. code:: ipython3

    # get a prediction of how the data will look like (minus module dimension)
    bin_obj.get_info()


.. parsed-literal::

    Frozen(SortedKeysDict({'trainId': 1, 'pulse': 2, 'x': 128, 'y': 512}))


.. code:: ipython3

    # bin 2 modules in parallel
    
    mod_list = [0,15]
    bin_obj.bin_data(chunksize=248, modules=mod_list, filepath='./')

.. code:: ipython3

    # Save metadata into file
    fname = 'testfile.h5'
    tbdet.save_xarray(fname, binnertrain, group='binner1', mode='a')
    tbdet.save_xarray(fname, binnerpulse, group='binner2', mode='a')

Example2
========

bin pump-probe data
~~~~~~~~~~~~~~~~~~~

.. code:: ipython3

    # run settings
    proposal_nb = 2212
    run_nb = 235

.. code:: ipython3

    # Collect information about run
    run_obj = tb.load_run(proposal_nb, run_nb)
    detector_info = tbdet.load_dssc_info(proposal_nb, run_nb)

.. code:: ipython3

    bin_obj = tbdet.DSSCBinner(proposal_nb, run_nb)

.. code:: ipython3

    # define buckets
    buckets_trainId = (tb.get_array(run_obj, 'PP800_PhaseShifter', 0.03)).values
    buckets_pulse = ['pumped', 'unpumped'] * 10
    
    # create binner
    binnerTrain = tbdet.create_dssc_bins("trainId",
                                    detector_info['trainIds'],
                                    buckets_trainId)
    binnerPulse = tbdet.create_dssc_bins("pulse",
                                    np.linspace(0,19,20, dtype=int),
                                    buckets_pulse)

.. code:: ipython3

    bin_obj.add_binner('trainId', binnerTrain)
    bin_obj.add_binner('pulse', binnerPulse)


.. code:: ipython3

    # get a prediction of how the data will look like (minus module dimension)
    bin_obj.get_info()


.. parsed-literal::

    Frozen(SortedKeysDict({'trainId': 271, 'pulse': 2, 'x': 128, 'y': 512}))


.. code:: ipython3

    # bin 2 modules using the joblib module to precess the two modules 
    # in parallel.

    bin_obj.bin_data(chunksize=248, modules=mod_list, filepath='./')