Basic principle =============== In a DSSC binner object we basically define maps, here called 'binners'. They define into which bucket a value along a certain dimension will be put into. map: coordinate array along specified dimension -> array of buckets Example 1 ========= Bin static run ~~~~~~~~~~~~~~ .. code:: ipython3 import os import logging import importlib import numpy as np import xarray as xr import pandas as pd import extra_data as ed import toolbox_scs as tb import toolbox_scs.detectors as tbdet import toolbox_scs.detectors.dssc_plot as dssc_plot #logging.basicConfig(level=logging.INFO) .. code:: ipython3 # run settings proposal_nb = 2711 run_nb = 97 .. code:: ipython3 # create a extra_data run object and collect detector information run = tb.load_run(proposal_nb, run_nb) dssc_info = tbdet.load_dssc_info(proposal_nb, run_nb) .. code:: ipython3 # create toolbox bin object bin_obj = tbdet.DSSCBinner(proposal_nb, run_nb) .. code:: ipython3 # create array that will map the pulse dimension into # buckets 'image' and 'dark' -> resulting dimension length = 2 buckets_pulse = ['image', 'dark'] * 30 # put all 60 pulses into buckets image and dark # create array that will map the trainId dimension into # buckets [0] -> resulting dimension length = 1 buckets_train = np.zeros(len(run.train_ids)).astype(int) # put all train Ids to the same bucket called 0. .. code:: ipython3 #create binners (xarray data arrays that basically act as a map) fpt = dssc_info['frames_per_train'] binnertrain = tbdet.create_dssc_bins("trainId",run.train_ids,buckets_train) binnerpulse = tbdet.create_dssc_bins("pulse",np.linspace(0,fpt-1,fpt, dtype=int),buckets_pulse) .. code:: ipython3 # add binners to bin object bin_obj.add_binner('trainId', binnertrain) bin_obj.add_binner('pulse', binnerpulse) .. code:: ipython3 # get a prediction of how the data will look like (minus module dimension) bin_obj.get_info() .. parsed-literal:: Frozen(SortedKeysDict({'trainId': 1, 'pulse': 2, 'x': 128, 'y': 512})) .. code:: ipython3 # bin 2 modules in parallel mod_list = [0,15] bin_obj.bin_data(chunksize=248, modules=mod_list, filepath='./') .. code:: ipython3 # Save metadata into file fname = 'testfile.h5' tbdet.save_xarray(fname, binnertrain, group='binner1', mode='a') tbdet.save_xarray(fname, binnerpulse, group='binner2', mode='a') Example2 ======== bin pump-probe data ~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 # run settings proposal_nb = 2212 run_nb = 235 .. code:: ipython3 # Collect information about run run_obj = tb.load_run(proposal_nb, run_nb) detector_info = tbdet.load_dssc_info(proposal_nb, run_nb) .. code:: ipython3 bin_obj = tbdet.DSSCBinner(proposal_nb, run_nb) .. code:: ipython3 # define buckets buckets_trainId = (tb.get_array(run_obj, 'PP800_PhaseShifter', 0.03)).values buckets_pulse = ['pumped', 'unpumped'] * 10 # create binner binnerTrain = tbdet.create_dssc_bins("trainId", detector_info['trainIds'], buckets_trainId) binnerPulse = tbdet.create_dssc_bins("pulse", np.linspace(0,19,20, dtype=int), buckets_pulse) .. code:: ipython3 bin_obj.add_binner('trainId', binnerTrain) bin_obj.add_binner('pulse', binnerPulse) .. code:: ipython3 # get a prediction of how the data will look like (minus module dimension) bin_obj.get_info() .. parsed-literal:: Frozen(SortedKeysDict({'trainId': 271, 'pulse': 2, 'x': 128, 'y': 512})) .. code:: ipython3 # bin 2 modules using the joblib module to precess the two modules # in parallel. bin_obj.bin_data(chunksize=248, modules=mod_list, filepath='./')