# -*- coding: utf-8 -*- """ TZPG simple calculator for SCS. Interactive widget to calculate beam sizes and position at the sample and detector planes for the SCS instrument. Copyright (2019) SCS Team. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle, Polygon from matplotlib.colors import hsv_to_rgb import ipywidgets as widgets from ipywidgets import HBox, VBox, Layout from IPython.display import display # zone plate focal length F = 250*1e-3 # [m] # Z position of the zone plate optic from the first interaction point (sample Z stage at 0 mm) Z0 = 230*1e-3 # [m] # zone plate nominal focal sorthened by the KBS focusing d = 3.3 - Z0 # distance between HFM and TZPG f1 = 7.3 # HFM focus 2 m behind second interaction point F = F*(d-f1)/(d-f1-F) KBS_F = f1 - d # KBS focus distance from TZPG # number of membrane to show SampleN = 7 TZPG_db = { 'Custom': { 'design_nrj': 860, 'TZPGwH': 1, 'TZPGwV': 1, 'TZPGoffaxis': 0.75, 'grating': 3.8}, 'O': { 'design_nrj': 530, 'TZPGwH': 0.8, 'TZPGwV': 0.8, 'TZPGoffaxis': 0.55, 'grating': 3.1}, 'Fe': { 'design_nrj': 715, 'TZPGwH': 0.8, 'TZPGwV': 0.8, 'TZPGoffaxis': 0.55, 'grating': 3.1}, 'Ni': { 'design_nrj': 860, 'TZPGwH': 0.8, 'TZPGwV': 0.8, 'TZPGoffaxis': 0.55, 'grating': 3.1}, 'Gd': { 'design_nrj': 1210, 'TZPGwH': 0.8, 'TZPGwV': 0.8, 'TZPGoffaxis': 0.55, 'grating': 3.1}, } class TZPGcalc(): def __init__(self): self.initFig() self.initWidgets() self.UpdateFig() display(self.control) def initFig(self): """ Creates a figure for the sample plane and detector plane images with all necessary drawings. """ plt.close('TZPGcalc') fig, (self.ax_sam, self.ax_det) = plt.subplots(1, 2, num='TZPGcalc', figsize=(6,3)) # display scale self.scale = 1e3 # displayed distances in [mm] self.ax_sam.set_title('Sample plane') self.ax_det.set_title('Detector plane') self.ax_sam.set_aspect('equal') self.ax_det.set_aspect('equal') self.ax_sam.set_xlim([-2, 2]) self.ax_sam.set_ylim([-2, 2]) self.ax_det.set_xlim([-35, 35]) self.ax_det.set_ylim([-20, 50]) # red and blue shifted color of the beams c_rr = hsv_to_rgb([0/360, 50/100, 100/100]) c_rb = hsv_to_rgb([40/360, 50/100, 100/100]) c_gr = hsv_to_rgb([95/360, 60/100, 100/100]) c_gb = hsv_to_rgb([145/360, 60/100, 100/100]) self.samBeamsL = { 'F0G0': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F0G1': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F0G-1': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F1G0': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor=c_rr, alpha=0.7, lw=None)), 'F1G1': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor=c_gr, alpha=0.7, lw=None)), 'F1G-1': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor=c_gr, alpha=0.7, lw=None)) } self.detBeamsL = { 'F0G0': self.ax_det.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F0G1': self.ax_det.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F0G-1': self.ax_det.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F1G0': self.ax_det.add_patch( Polygon([(0, 0)], facecolor=c_rr, alpha=0.7, lw=None)), 'F1G1': self.ax_det.add_patch( Polygon([(0, 0)], facecolor=c_gr, alpha=0.7, lw=None)), 'F1G-1': self.ax_det.add_patch( Polygon([(0, 0)], facecolor=c_gr, alpha=0.7, lw=None)) } self.samBeamsH = { 'F0G0': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F0G1': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F0G-1': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F1G0': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor=c_rb, alpha=0.7, lw=None)), 'F1G1': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor=c_gb, alpha=0.7, lw=None)), 'F1G-1': self.ax_sam.add_patch( Polygon([(0, 0)], facecolor=c_gb, alpha=0.7, lw=None)) } self.detBeamsH = { 'F0G0': self.ax_det.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F0G1': self.ax_det.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F0G-1': self.ax_det.add_patch( Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)), 'F1G0': self.ax_det.add_patch( Polygon([(0, 0)], facecolor=c_rb, alpha=0.7, lw=None)), 'F1G1': self.ax_det.add_patch( Polygon([(0, 0)], facecolor=c_gb, alpha=0.7, lw=None)), 'F1G-1': self.ax_det.add_patch( Polygon([(0, 0)], facecolor=c_gb, alpha=0.7, lw=None)) } self.detLines = { 'module': self.ax_det.add_patch( Rectangle((0, 0), 1, 1, fill=False, facecolor='k')), 'Vfilter': self.ax_det.add_patch( Rectangle((0, 0), 1, 1, facecolor="blue", alpha=0.4)), 'Hfilter': self.ax_det.add_patch( Rectangle((0, 0), 1, 1, facecolor="blue", alpha=0.4)), 'diamond': self.ax_det.add_patch( Rectangle((-8, -8), 16, 16, facecolor="blue", alpha=0.4, angle=45)) } # 5x5 membranes self.sampleLines = {} self.etchLines = {} for k in range(SampleN*SampleN): self.sampleLines[k] = self.ax_sam.add_patch( Rectangle((0, 0), 1, 1, fill=False, facecolor='k')) self.etchLines[k] = self.ax_sam.add_patch( Rectangle((0, 0), 1, 1, fill=False, facecolor='k', alpha=0.4, ls='--')) def RectUpdate(self, rect, xLeft, yBottom, xRight, yTop): """ Updates the position and size of the given Rectangle. rect: Rectangle to update xLeft: x position of the left corner yBottom: y position of the bottom corner xRight: x position of the right corner yTop: y position of the top corner """ xw = np.abs(xLeft - xRight) yw = np.abs(yTop - yBottom) rect.set_xy((self.scale*xLeft, self.scale*yBottom)) rect.set_height(self.scale*yw) rect.set_width(self.scale*xw) def PolyUpdate(self, poly, xLeft, yBottom, xRight, yTop): """ Updates the corner position of a Polygon. poly: regular Polygon to update xLeft: x position of the left corner yBottom: y position of the bottom corner xRight: x position of the right corner yTop: y position of the top corner """ xy = self.scale*np.array([ [xLeft, yBottom], [xLeft, yTop], [xRight, yTop], [xRight, yBottom]]) poly.set_xy(xy) def LinePlaneIntersection(self, l1, l2, p0, n): """ Calculate the intersection point in space between a line (beam) passing through 2 points l1 and l2 and a (sample) plane passing by p0 with normal n l1: [x,y,z] point on line l2: [x,y,z] point on line p0: [x,y,z] point on plane n: plane normal vector """ # plane parametrized as (p - p0).n = 0 # line parametrized as p = l1 + l12*d with d Real l12 = l2 - l1 if np.dot(l12,n) == 0: return [0,0,0] # line is either in the plane or outside the plane else: d = np.dot((p0 - l1), n)/np.dot(l12,n) return l1 + l12*d def UpdateBeams(self, Beams, Z, incidence, conf): """ Update the position and size of the beams. Beams: dictionary of f'F{f}G{g}' Polygon for f = 0 and 1 zone plate order and g = +1, 0 and -1 grating order Z: distance Z between the zone plate and the current imaging plane incidence: incidence angle of the imaging plane in rad conf: dictionnary of distance for calculation {'F', 'TZPGwH', 'TZPGwV', 'TZPGo', 'theta_grating'} """ F = conf['F'] wH = conf['TZPGwH'] wV = conf['TZPGwV'] o = conf['TZPGo'] offaxis = wV/2 + o # imaging plane n = np.array([np.sin(incidence), 0, np.cos(incidence)]) p0 = np.array([0,0,Z]) # zone plate 4 corner points l1_list = [ np.array([wH/2,wV/2,0]), np.array([wH/2,-wV/2,0]), np.array([-wH/2,-wV/2,0]), np.array([-wH/2,wV/2,0]) ] # 6 beam focus point l2_list = { 'F0G0': np.array([0,0,KBS_F]), 'F0G1': np.array([KBS_F*np.arctan(conf['theta_grating']),0,KBS_F]), 'F0G-1': np.array([-KBS_F*np.arctan(conf['theta_grating']),0,KBS_F]), 'F1G0': np.array([0,offaxis,F]), 'F1G1': np.array([F*np.arctan(conf['theta_grating']),offaxis,F]), 'F1G-1': np.array([-F*np.arctan(conf['theta_grating']),offaxis,F]) } for beam in l2_list.keys(): l2 = l2_list[beam] corners = [] for l1 in l1_list: corners.append(self.LinePlaneIntersection(l1, l2, p0, n)[:2]) Beams[beam].set_xy(self.scale*np.array(corners)) def DetectorUpdate(self, Xoff, Yoff): """ Draw DSSC detector module with filter mask. Xoff: x offset Yoff: y offset """ # x module axis is vertical, y module axis is horizontal # the module 15 is +0.91 mm vertical from the beam and 4.233 mm horizontal from the beam offset_h = 4.233e-3 #[m] offset_v = 0.91e-3 #[m] moduleHw = 256*0.236e-3 #[m] moduleVw = 128*0.204e-3 #[m] filterW = 7e-3 #[m] filterL = 160e-3 #[m] diamondW = 16e-3 #[m] self.RectUpdate(self.detLines['module'], -moduleHw - offset_h + Xoff, offset_v + Yoff, -offset_h + Xoff, moduleVw + offset_v + Yoff) self.RectUpdate(self.detLines['Vfilter'], -filterW/2 + Xoff, -filterL/2 + Yoff, filterW/2 + Xoff, filterL/2 + Yoff) self.RectUpdate(self.detLines['Hfilter'], -filterL/2 + Xoff, -filterW/2 + Yoff, filterL/2 + Xoff, filterW/2 + Yoff) # moving rotated rectangles is a pain in matplotlib self.detLines['diamond'].set_xy((self.scale*Xoff, self.scale*(Yoff - diamondW/2*np.sqrt(2)))) def SampleUpdate(self, w, p, Xoff, Yoff, thickness=0.525, incidence=0, etch_angle=54.74): """ Draw the sample. w: membrane width p: membrane pitch Xoff: sample x offset Yoff: sample y offset thickness: sample thickness used to calculate the etched facets incidence: incidence angle in rad etch_angle: etching angle from surface in rad """ # Si etching angle wp = w +2*thickness/np.tan(etch_angle) # incidence angle squeezes sample and etch lines # and induces an apparent shift off the etch lines ci = np.cos(incidence) thsi = thickness*np.sin(incidence) j = 0 for k in range(-(SampleN-1)//2, (SampleN-1)//2+1): for l in range(-(SampleN-1)//2, (SampleN-1)//2+1): self.RectUpdate(self.sampleLines[j], ci*(k*p - w/2 + Xoff), l*p - w/2 - Yoff, ci*(k*p + w/2 + Xoff), l*p + w/2 - Yoff) self.RectUpdate(self.etchLines[j], ci*(k*p - wp/2 + Xoff)+thsi, l*p - wp/2 - Yoff, ci*(k*p + wp/2 + Xoff)+thsi, l*p + wp/2 - Yoff) j+=1 def UpdateFig(self): """ Update the figure with the current slider values. """ # we calculate the optics for the central wavelength nrjL, nrjH = self.nrj_slider.value # [eV] wlL = 1240/nrjL*1e-9 wlH = 1240/nrjH*1e-9 nrjD = self.design_nrj_slider.value # [eV] wl = 1240/nrjD*1e-9 theta_grating = self.grating_slider.value*1e-3 # [rad] sampleZ = self.samz_slider.value*1e-3 # [m] samIncidence = np.deg2rad(self.samIncidence_slider.value) # [rad] detectorZ = self.det_slider.value*1e-3 # [m] TZPGwH = self.TZPGwH_slider.value*1e-3 #[m] TZPGwV = self.TZPGwV_slider.value*1e-3 #[m] TZPGo = self.TZPGoffaxis_slider.value*1e-3 - TZPGwV/2 #[m] d_nominal = wl/np.sin(theta_grating) self.d_label.value = f'Grating Pitch:{int(np.round(d_nominal*1e9))} nm' rn = TZPGwV + TZPGo dr_nominal = wl * F / (2*rn) self.dr_label.value = f'Outer Zone Plate width dr:{int(np.round(dr_nominal*1e9))} nm' # configuration for the low energy and high energy photon confL = {'F':(2*rn)*dr_nominal/wlL, 'theta_grating':np.arcsin(wlL/d_nominal), 'TZPGwH':TZPGwH, 'TZPGwV':TZPGwV, 'TZPGo':TZPGo} confH = {'F':(2*rn)*dr_nominal/wlH, 'theta_grating':np.arcsin(wlH/d_nominal), 'TZPGwH':TZPGwH, 'TZPGwV':TZPGwV, 'TZPGo':TZPGo} # update the beams self.UpdateBeams(self.samBeamsL, Z0 + sampleZ, samIncidence, confL) self.UpdateBeams(self.detBeamsL, Z0 + detectorZ, 0, confL) self.UpdateBeams(self.samBeamsH, Z0 + sampleZ, samIncidence, confH) self.UpdateBeams(self.detBeamsH, Z0 + detectorZ, 0, confH) # update the detector detXoff = self.detX_slider.value*1e-3 #[m] detYoff = self.detY_slider.value*1e-3 #[m] self.DetectorUpdate(detXoff, detYoff) # update the sample samw = self.samw_slider.value*1e-3 #[m] samp = self.samp_slider.value*1e-3 #[m] samXoff = self.samX_slider.value*1e-3 #[m] samYoff = self.samY_slider.value*1e-3 #[m] samthickness = self.samthickness_slider.value*1e-6 #[m] samEtchAngle = np.deg2rad(self.samEtchAngle_slider.value) #[rad] self.SampleUpdate(samw, samp, samXoff, samYoff, samthickness, samIncidence, samEtchAngle) def initWidgets(self): """ Creates the necessary interactive widget controls. """ self.button = widgets.Button( description='Update', ) @self.button.on_click def plot_on_click(b): self.UpdateFig() # TZPG part self.type = widgets.Dropdown( options=TZPG_db.keys(), value='Custom', description='Type:', disabled=False ) def TZPGtype(change): v = TZPG_db[change.new] self.design_nrj_slider.value = v['design_nrj'] self.TZPGwH_slider.value = v['TZPGwH'] self.TZPGwV_slider.value = v['TZPGwV'] self.TZPGoffaxis_slider.value = v['TZPGoffaxis'] self.grating_slider.value = v['grating'] # necessary to recompute grating pitch and outer zone plate width self.UpdateFig() self.type.observe(TZPGtype, names='value') self.nrj_slider = widgets.FloatRangeSlider( value=[840., 880.], min=450., max=3200.0, step=1, readout_format='.2f', ) self.design_nrj_slider = widgets.FloatSlider( value=860., min=450., max=3200.0, step=1, readout_format='.2f', ) self.TZPGwH_slider = widgets.FloatSlider( value=1.0, min=.1, max=3.0, step=0.05, readout_format='.2f', ) self.TZPGwV_slider = widgets.FloatSlider( value=1.0, min=.1, max=3.0, step=0.05, readout_format='.2f', ) self.TZPGoffaxis_slider = widgets.FloatSlider( value=0.75, min=.0, max=2.0, step=0.05, readout_format='.2f', ) self.grating_slider = widgets.FloatSlider( value=3.8, min=1., max=10.0, step=0.05, readout_format='.2f', ) self.dr_label = widgets.Label(value='dr') self.d_label = widgets.Label(value='dr') TZPGTab = VBox(children=[self.type, HBox([widgets.Label(value='Energy (eV):'), self.nrj_slider]), HBox([widgets.Label(value='Design Energy (eV):'), self.design_nrj_slider]), HBox([widgets.Label(value=r'Grating $\theta$ (mrad):'), self.grating_slider]), self.d_label, self.dr_label, HBox([widgets.Label(value='TZPG horiz. width (mm):'), self.TZPGwH_slider]), HBox(children=[HBox([widgets.Label(value='TZPG vert. width (mm):'), self.TZPGwV_slider]), HBox([widgets.Label(value='TZPG off axis (mm):'), self.TZPGoffaxis_slider]) ])]) # sample part self.samz_slider = widgets.FloatSlider( value=30., min=-10., max=180.0, step=1, readout_format='.2f', ) self.samw_slider = widgets.FloatSlider( value=.5, min=0.01, max=2.0, step=.01, readout_format='.2f', ) self.samp_slider = widgets.FloatSlider( value=1.0, min=0.01, max=2.0, step=.01, readout_format='.2f', ) self.samX_slider = widgets.FloatSlider( value=0., min=-10, max=10, step=0.01, readout_format='.2f', ) self.samY_slider = widgets.FloatSlider( value=0., min=-10, max=10, step=0.01, readout_format='.2f', ) self.samthickness_slider = widgets.FloatSlider( value=381, min=1, max=1000, step=1, readout_format='.0f', ) self.samIncidence_slider = widgets.FloatSlider( value=0, min=0, max=90, step=1, readout_format='.0f', ) self.samEtchAngle_slider = widgets.FloatSlider( value=54.74, min=0, max=90, step=0.01, readout_format='.2f', ) samTab = VBox(children=[HBox([widgets.Label(value='Sample Z (mm):'), self.samz_slider]), HBox(children=[HBox([widgets.Label(value='Membrane width (mm):'), self.samw_slider]), HBox([widgets.Label(value='Membrane pitch (mm):'), self.samp_slider])]), HBox(children=[HBox([widgets.Label(value='Sample X-Offset (mm):'), self.samX_slider]), HBox([widgets.Label(value='Sample Y-Offset (mm):'), self.samY_slider])]), HBox([widgets.Label(value='Substrate thickness (um):'), self.samthickness_slider]), HBox([HBox([widgets.Label(value='Normal incidence (deg):'), self.samIncidence_slider]), HBox([widgets.Label(value='Etch angle from surface (deg):'), self.samEtchAngle_slider])]) ]) #detector tab self.det_slider = widgets.FloatSlider( value=2000., min=1000, max=5800, step=1, description='', readout_format='.2f', ) self.detX_slider = widgets.FloatSlider( value=20., min=-50, max=50, step=0.5, readout_format='.2f', ) self.detY_slider = widgets.FloatSlider( value=0., min=-50, max=50, step=0.5, readout_format='.2f', ) detTab = VBox(children=[HBox([widgets.Label(value='Detector Z (m):'), self.det_slider]), HBox(children=[HBox([widgets.Label(value='Detector X-Offset (mm):'), self.detX_slider]), HBox([widgets.Label(value='Detector Y-Offset (mm):'), self.detY_slider])])]) tab1 = widgets.Accordion(children=[TZPGTab]) tab1.set_title(0, 'TZPG') tab1.selected_index = None tab2 = widgets.Accordion(children=[samTab]) tab2.set_title(0, 'sample') tab2.selected_index = None tab3 = widgets.Accordion(children=[detTab]) tab3.set_title(0, 'detector') tab3.selected_index = None self.control = VBox(children=[tab1, tab2, tab3, self.button])