# -*- coding: utf-8 -*- """ TZPG simple calculator for SCS. Interactive widget to calculate beam sizes and position at the sample and detector planes for the SCS instrument. Copyright (2019) SCS Team. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib.colors import hsv_to_rgb import ipywidgets as widgets from ipywidgets import HBox, VBox, Layout from IPython.display import display # zone plate focal length F = 250*1e-3 # [m] # Z position of the zone plate optic from the first interaction point (sample Z stage at 0 mm) Z0 = 230*1e-3 # [m] # zone plate nominal focal sorthened by the KBS focusing d = 3.3 - Z0 # distance between HFM and TZPG f1 = 7.3 # HFM focus 2 m behind second interaction point F = F*(d-f1)/(d-f1-F) # number of membrane to show SampleN = 7 class TZPGcalc(): def __init__(self): self.initFig() self.initWidgets() self.UpdateFig() display(self.control) def initFig(self): """ Creates a figure for the sample plane and detector plane images with all necessary drawings. """ plt.close('TZPGcalc') fig, (self.ax_sam, self.ax_det) = plt.subplots(1, 2, num='TZPGcalc', figsize=(6,3)) # display scale self.scale = 1e3 # displayed distances in [mm] self.ax_sam.set_title('Sample plane') self.ax_det.set_title('Detector plane') self.ax_sam.set_aspect('equal') self.ax_det.set_aspect('equal') self.ax_sam.set_xlim([-2, 2]) self.ax_sam.set_ylim([-2, 2]) self.ax_det.set_xlim([-35, 35]) self.ax_det.set_ylim([-20, 50]) # red and blue shifted color of the beams c_rr = hsv_to_rgb([0/360, 50/100, 100/100]) c_rb = hsv_to_rgb([40/360, 50/100, 100/100]) c_gr = hsv_to_rgb([95/360, 60/100, 100/100]) c_gb = hsv_to_rgb([145/360, 60/100, 100/100]) self.samBeamsL = {'F0G0': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F0G1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F0G-1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F1G0': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_rr, alpha=0.7, lw=None)), 'F1G1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gr, alpha=0.7, lw=None)), 'F1G-1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gr, alpha=0.7, lw=None)) } self.detBeamsL = {'F0G0': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F0G1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F0G-1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F1G0': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_rr, alpha=0.7, lw=None)), 'F1G1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gr, alpha=0.7, lw=None)), 'F1G-1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gr, alpha=0.7, lw=None)) } self.samBeamsH = {'F0G0': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F0G1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F0G-1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F1G0': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_rb, alpha=0.7, lw=None)), 'F1G1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gb, alpha=0.7, lw=None)), 'F1G-1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gb, alpha=0.7, lw=None)) } self.detBeamsH = {'F0G0': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F0G1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F0G-1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)), 'F1G0': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_rb, alpha=0.7, lw=None)), 'F1G1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gb, alpha=0.7, lw=None)), 'F1G-1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gb, alpha=0.7, lw=None)) } self.detLines = {'module': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, fill=False, facecolor='k')), 'Vfilter': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="blue", alpha=0.4)), 'Hfilter': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="blue", alpha=0.4)), 'diamond': self.ax_det.add_patch(Rectangle((-8, -8), 16, 16, facecolor="blue", alpha=0.4, angle=45)) } # 5x5 membranes self.sampleLines = {} self.etchLines = {} for k in range(SampleN*SampleN): self.sampleLines[k] = self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, fill=False, facecolor='k')) self.etchLines[k] = self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, fill=False, facecolor='k', alpha=0.4, ls='--')) def RectUpdate(self, rect, xLeft, yBottom, xRight, yTop): """ Updates the position and size of the given Rectangle. rect: Rectangle to update xLeft: x position of the left corner yBottom: y position of the bottom corner xRight: x position of the right corner yTop: y position of the top corner """ xw = np.abs(xLeft - xRight) yw = np.abs(yTop - yBottom) rect.set_xy((self.scale*xLeft, self.scale*yBottom)) rect.set_height(self.scale*yw) rect.set_width(self.scale*xw) def UpdateBeams(self, Beams, Z, conf): """ Update the position and size of the beams. Beams: dictionary of f'F{f}G{g}' Rectangles for f = 0 and 1 zone plate order and g = +1, 0 and -1 grating order Z: distance Z between the zone plate and the current imaging plane conf: dictionnary of distance for calculation {'F', 'TZPGwH', 'TZPGwV', 'TZPGo', 'theta_grating'} """ F = conf['F'] wH = conf['TZPGwH'] wV = conf['TZPGwV'] o = conf['TZPGo'] offaxis = wV/2 + o # side view X Fx = F*np.arctan(conf['theta_grating']) Xdg0 = np.abs(Z - F)/F*wH/2 Xdg1L = Z/F*(Fx - wH/2) + wH/2 Xdg1 = Z*np.tan(conf['theta_grating']) Xdg1H = Z/F*(Fx + wH/2) - wH/2 # top view Y YdfL = (o*(Z - F)/F + offaxis) Ydf = ((o + wV/2)*(Z - F)/F + offaxis) YdfH = ((o + wV)*(Z - F)/F + offaxis) if Z < F: # before zone plate focus, low and high beam edges are swapped Xdg1L, Xdg1H = (Xdg1H, Xdg1L) YdfL, YdfH = (YdfH, YdfL) self.RectUpdate(Beams['F0G0'], -wH/2, -wV/2, wH/2, wV/2) self.RectUpdate(Beams['F0G1'], Xdg1-wH/2, -wV/2, Xdg1+wH/2, wV/2) self.RectUpdate(Beams['F0G-1'], -Xdg1-wH/2, -wV/2, -Xdg1+wH/2, wV/2) self.RectUpdate(Beams['F1G0'], -Xdg0, YdfL, Xdg0, YdfH) self.RectUpdate(Beams['F1G1'], Xdg1L, YdfL, Xdg1H, YdfH) self.RectUpdate(Beams['F1G-1'], -Xdg1H, YdfL, -Xdg1L, YdfH) def DetectorUpdate(self, Xoff, Yoff): """ Draw DSSC detector module with filter mask. Xoff: x offset Yoff: y offset """ # x module axis is vertical, y module axis is horizontal # the module 15 is +0.91 mm vertical from the beam and 4.233 mm horizontal from the beam offset_h = 4.233e-3 #[m] offset_v = 0.91e-3 #[m] moduleHw = 256*0.236e-3 #[m] moduleVw = 128*0.204e-3 #[m] filterW = 7e-3 #[m] filterL = 160e-3 #[m] diamondW = 16e-3 #[m] self.RectUpdate(self.detLines['module'], -moduleHw - offset_h + Xoff, offset_v + Yoff, -offset_h + Xoff, moduleVw + offset_v + Yoff) self.RectUpdate(self.detLines['Vfilter'], -filterW/2 + Xoff, -filterL/2 + Yoff, filterW/2 + Xoff, filterL/2 + Yoff) self.RectUpdate(self.detLines['Hfilter'], -filterL/2 + Xoff, -filterW/2 + Yoff, filterL/2 + Xoff, filterW/2 + Yoff) # moving rotated rectangles is a pain in matplotlib self.detLines['diamond'].set_xy((self.scale*Xoff, self.scale*(Yoff - diamondW/2*np.sqrt(2)))) def SampleUpdate(self, w, p, Xoff, Yoff, thickness=0.525): """ Draw the sample. w: membrane width p: membrane pitch Xoff: sample x offset Yoff: sample y offset thickness: sample thickness used to calculate the etched facets """ # Si etching angle wp = w +2*thickness/np.tan(np.deg2rad(54.74)) j = 0 for k in range(-(SampleN-1)//2, (SampleN-1)//2+1): for l in range(-(SampleN-1)//2, (SampleN-1)//2+1): self.RectUpdate(self.sampleLines[j], k*p - w/2 + Xoff, l*p - w/2 - Yoff, k*p + w/2 + Xoff, l*p + w/2 - Yoff) self.RectUpdate(self.etchLines[j], k*p - wp/2 + Xoff, l*p - wp/2 - Yoff, k*p + wp/2 + Xoff, l*p + wp/2 - Yoff) j+=1 def UpdateFig(self): """ Update the figure with the current slider values. """ # we calculate the optics for the central wavelength nrjL, nrjH = self.nrj_slider.value # [eV] wlL = 1240/nrjL*1e-9 wlH = 1240/nrjH*1e-9 nrjD = self.design_nrj_slider.value # [eV] wl = 1240/nrjD*1e-9 theta_grating = self.grating_slider.value*1e-3 # [rad] sampleZ = self.samz_slider.value*1e-3 # [m] detectorZ = self.det_slider.value*1e-3 # [m] TZPGwH = self.TZPGwH_slider.value*1e-3 #[m] TZPGwV = self.TZPGwV_slider.value*1e-3 #[m] TZPGo = self.TZPGoffaxis_slider.value*1e-3 - TZPGwV/2 #[m] d_nominal = wl/np.sin(theta_grating) self.d_label.value = f'Grating Pitch:{int(np.round(d_nominal*1e9))} nm' rn = TZPGwV + TZPGo dr_nominal = wl * F / (2*rn) self.dr_label.value = f'Outer Zone Plate width dr:{int(np.round(dr_nominal*1e9))} nm' # configuration for the low energy and high energy photon confL = {'F':(2*rn)*dr_nominal/wlL, 'theta_grating':np.arcsin(wlL/d_nominal), 'TZPGwH':TZPGwH, 'TZPGwV':TZPGwV, 'TZPGo':TZPGo} confH = {'F':(2*rn)*dr_nominal/wlH, 'theta_grating':np.arcsin(wlH/d_nominal), 'TZPGwH':TZPGwH, 'TZPGwV':TZPGwV, 'TZPGo':TZPGo} # update the beams self.UpdateBeams(self.samBeamsL, Z0 + sampleZ, confL) self.UpdateBeams(self.detBeamsL, Z0 + detectorZ, confL) self.UpdateBeams(self.samBeamsH, Z0 + sampleZ, confH) self.UpdateBeams(self.detBeamsH, Z0 + detectorZ, confH) # update the detector detXoff = self.detX_slider.value*1e-3 #[m] detYoff = self.detY_slider.value*1e-3 #[m] self.DetectorUpdate(detXoff, detYoff) # update the sample samw = self.samw_slider.value*1e-3 #[m] samp = self.samp_slider.value*1e-3 #[m] samXoff = self.samX_slider.value*1e-3 #[m] samYoff = self.samY_slider.value*1e-3 #[m] samthickness = self.samthickness_slider.value*1e-6 #[m] self.SampleUpdate(samw, samp, samXoff, samYoff, samthickness) def initWidgets(self): """ Creates the necessary interactive widget controls. """ self.button = widgets.Button( description='Update', ) @self.button.on_click def plot_on_click(b): self.UpdateFig() # TZPG part self.nrj_slider = widgets.FloatRangeSlider( value=[840., 880.], min=450., max=3200.0, step=1, readout_format='.2f', ) self.design_nrj_slider = widgets.FloatSlider( value=860., min=450., max=3200.0, step=1, readout_format='.2f', ) self.TZPGwH_slider = widgets.FloatSlider( value=1.0, min=.1, max=3.0, step=0.05, readout_format='.2f', ) self.TZPGwV_slider = widgets.FloatSlider( value=1.0, min=.1, max=3.0, step=0.05, readout_format='.2f', ) self.TZPGoffaxis_slider = widgets.FloatSlider( value=0.75, min=.0, max=2.0, step=0.05, readout_format='.2f', ) self.grating_slider = widgets.FloatSlider( value=3.8, min=1., max=10.0, step=0.05, readout_format='.2f', ) self.dr_label = widgets.Label(value='dr') self.d_label = widgets.Label(value='dr') TZPGTab = VBox(children=[HBox([widgets.Label(value='Energy (eV):'), self.nrj_slider]), HBox([widgets.Label(value='Design Energy (eV):'), self.design_nrj_slider]), HBox([widgets.Label(value=r'Grating $\theta$ (mrad):'), self.grating_slider]), self.d_label, self.dr_label, HBox([widgets.Label(value='TZPG horiz. width (mm):'), self.TZPGwH_slider]), HBox(children=[HBox([widgets.Label(value='TZPG vert. width (mm):'), self.TZPGwV_slider]), HBox([widgets.Label(value='TZPG off axis (mm):'), self.TZPGoffaxis_slider]) ])]) # sample part self.samz_slider = widgets.FloatSlider( value=30., min=-10., max=180.0, step=1, readout_format='.2f', ) self.samw_slider = widgets.FloatSlider( value=.5, min=0.01, max=2.0, step=.01, readout_format='.2f', ) self.samp_slider = widgets.FloatSlider( value=1.0, min=0.01, max=2.0, step=.01, readout_format='.2f', ) self.samX_slider = widgets.FloatSlider( value=0., min=-10, max=10, step=0.01, readout_format='.2f', ) self.samY_slider = widgets.FloatSlider( value=0., min=-10, max=10, step=0.01, readout_format='.2f', ) self.samthickness_slider = widgets.FloatSlider( value=381, min=1, max=1000, step=1, readout_format='.0f', ) samTab = VBox(children=[HBox([widgets.Label(value='Sample Z (mm):'), self.samz_slider]), HBox(children=[HBox([widgets.Label(value='Membrane width (mm):'), self.samw_slider]), HBox([widgets.Label(value='Membrane pitch (mm):'), self.samp_slider])]), HBox(children=[HBox([widgets.Label(value='Sample X-Offset (mm):'), self.samX_slider]), HBox([widgets.Label(value='Sample Y-Offset (mm):'), self.samY_slider])]), HBox([widgets.Label(value='Substrate thickness (um):'), self.samthickness_slider]) ]) #detector tab self.det_slider = widgets.FloatSlider( value=2000., min=1000, max=5800, step=1, description='', readout_format='.2f', ) self.detX_slider = widgets.FloatSlider( value=20., min=-50, max=50, step=0.5, readout_format='.2f', ) self.detY_slider = widgets.FloatSlider( value=0., min=-50, max=50, step=0.5, readout_format='.2f', ) detTab = VBox(children=[HBox([widgets.Label(value='Detector Z (m):'), self.det_slider]), HBox(children=[HBox([widgets.Label(value='Detector X-Offset (mm):'), self.detX_slider]), HBox([widgets.Label(value='Detector Y-Offset (mm):'), self.detY_slider])])]) tab1 = widgets.Accordion(children=[TZPGTab]) tab1.set_title(0, 'TZPG') tab1.selected_index = None tab2 = widgets.Accordion(children=[samTab]) tab2.set_title(0, 'sample') tab2.selected_index = None tab3 = widgets.Accordion(children=[detTab]) tab3.set_title(0, 'detector') tab3.selected_index = None self.control = VBox(children=[tab1, tab2, tab3, self.button])