diff --git a/src/calng/JungfrauCorrection.py b/src/calng/JungfrauCorrection.py index 8dc6210a8e4d0173510e05606b70b01e042f9fd5..58d481c9a4aa6d14758c3d21f319b2a27d893e80 100644 --- a/src/calng/JungfrauCorrection.py +++ b/src/calng/JungfrauCorrection.py @@ -3,7 +3,6 @@ import enum import cupy import numpy as np from karabo.bound import ( - BOOL_ELEMENT, DOUBLE_ELEMENT, KARABO_CLASSINFO, OUTPUT_CHANNEL, @@ -99,14 +98,10 @@ class JungfrauGpuRunner(base_gpu.BaseGpuRunner): def _get_gain_map_for_preview(self): return self.input_gain_map_gpu - def load_data(self, image_data, input_gain_map, cell_table, daq_transpose=False): + def load_data(self, image_data, input_gain_map, cell_table): """Experiment: loading all three in one function as they are tied""" - if daq_transpose: - self.input_data_gpu[:] = cupy.asarray(image_data).transpose()[0] - self.input_gain_map_gpu[:] = cupy.asarray(input_gain_map).transpose()[0] - else: - self.input_data_gpu.set(image_data) - self.input_gain_map_gpu.set(input_gain_map) + self.input_data_gpu.set(image_data) + self.input_gain_map_gpu.set(input_gain_map) if self.burst_mode: self.cell_table_gpu.set(cell_table) @@ -258,7 +253,6 @@ class JungfrauCorrection(BaseCorrection): _calcat_friend_class = JungfrauCalcatFriend _constant_enum_class = JungfrauConstants _managed_keys = BaseCorrection._managed_keys.copy() - _schema_cache_fields = BaseCorrection._schema_cache_fields.copy() _image_data_path = "data.adc" _cell_table_path = "data.memoryCell" @@ -287,22 +281,6 @@ class JungfrauCorrection(BaseCorrection): .commit(), ) - ( - BOOL_ELEMENT(expected) - .key("dataFormat.daqTranspose") - .displayedName("Transpose axes from DAQ") - .description( - "Data on daqOutput channel has interesting axis order. In online " - "deployments, this means that a transpose is needed before correction." - ) - .assignmentOptional() - .defaultValue(True) - .reconfigurable() - .commit(), - ) - JungfrauCorrection._schema_cache_fields.add("dataFormat.daqTranspose") - JungfrauCorrection._managed_keys.add("dataFormat.daqTranspose") - ( OUTPUT_CHANNEL(expected) .key("preview.outputGainMap") @@ -363,10 +341,7 @@ class JungfrauCorrection(BaseCorrection): cell_table = cell_table[np.newaxis] try: self.kernel_runner.load_data( - image_data, - data_hash.get("data.gain"), - cell_table, - daq_transpose=self._schema_cache["dataFormat.daqTranspose"] + image_data, data_hash.get("data.gain"), cell_table ) except ValueError as e: self.log_status_warn(f"Failed to load data: {e}")