From 00473e64f06166c5c6082773db3a3efec112b7fd Mon Sep 17 00:00:00 2001
From: ahmedk <karim.ahmed@xfel.eu>
Date: Fri, 10 Feb 2023 18:24:25 +0100
Subject: [PATCH] small refactors

---
 .../Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb  | 7 ++++---
 1 file changed, 4 insertions(+), 3 deletions(-)

diff --git a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb
index 80fd57fde..daa5fbf8a 100644
--- a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb
+++ b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb
@@ -331,11 +331,12 @@
     "    \"\"\"\n",
     "    reduced_trains = n_trains\n",
     "    available_memory = (psutil.virtual_memory().available >> 30) - (16 * n_trains * (1024 * 512 * 3 + 1) // 1e9)\n",
+    "\n",
     "    parallel_threads = available_memory // ((1024 * 512 * 5 * n_trains) // 1e9)\n",
     "    if parallel_threads < 1:\n",
     "        reduced_trains = (available_memory // ((1024 * 512 * 4 / 1e9)))  - 4\n",
     "        warning(f\"Reducing the processed trains from {n_trains} to {reduced_trains} to fit the free memory.\")\n",
-    "    \n",
+    "\n",
     "    return max(min(memory_cells, int(parallel_threads)), 1), int(reduced_trains)"
    ]
   },
@@ -421,7 +422,7 @@
     "                f\"Less than {min_trains} trains are available in RAW data.\"\n",
     "                \" Not enough data to process darks.\")\n",
     "\n",
-    "        parallel_processes, n_trains = calculate_parallel_threads(n_trains, memory_cells)\n",
+    "        parallel_threads, n_trains = calculate_parallel_threads(n_trains, memory_cells)\n",
     "\n",
     "        # Select only requested number of images to process darks.\n",
     "        instr_dc = instr_dc.select_trains(np.s_[:n_trains])\n",
@@ -446,7 +447,7 @@
     "            acelltable[1:] = 255\n",
     "\n",
     "        # Calculate offset and noise maps\n",
-    "        context = psh.context.ThreadContext(num_workers=parallel_processes)\n",
+    "        context = psh.context.ThreadContext(num_workers=parallel_threads)\n",
     "        context.map(process_cell, range(memory_cells))\n",
     "        del images\n",
     "        del acelltable\n",
-- 
GitLab