diff --git a/notebooks/LPD/LPD_Correct_Fast.ipynb b/notebooks/LPD/LPD_Correct_Fast.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..136a29bc66cadcbc1d88288b2eb7a0aad9c2e98b
--- /dev/null
+++ b/notebooks/LPD/LPD_Correct_Fast.ipynb
@@ -0,0 +1,609 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# LPD Offline Correction #\n",
+    "\n",
+    "Author: European XFEL Data Analysis Group"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "ExecuteTime": {
+     "end_time": "2018-12-03T15:19:56.056417Z",
+     "start_time": "2018-12-03T15:19:56.003012Z"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "# Input parameters\n",
+    "in_folder = \"/gpfs/exfel/exp/FXE/202201/p003073/raw/\"  # the folder to read data from, required\n",
+    "out_folder = \"/gpfs/exfel/data/scratch/schmidtp/random/LPD_test\"  # the folder to output to, required\n",
+    "metadata_folder = ''  # Directory containing calibration_metadata.yml when run by xfel-calibrate.\n",
+    "sequences = [0]  # sequences to correct, set to empty for all, range allowed\n",
+    "modules = ''  # modules to correct, set to -1 for all, range allowed, used only when karabo_da is empty\n",
+    "run = 10 # runs to process, required\n",
+    "\n",
+    "karabo_id = \"FXE_DET_LPD1M-1\"  # karabo karabo_id\n",
+    "karabo_da = ''  # a list of data aggregators names, Default empty string for selecting all data aggregators\n",
+    "input_source = '{karabo_id}/DET/{module_index}CH0:xtdf'  # Input fast data source.\n",
+    "output_source = ''  # Output fast data source, empty to use same as input\n",
+    "\n",
+    "# CalCat parameters\n",
+    "use_dir_creation_date = True  # use the creation date of the directory for database time derivation\n",
+    "cal_db_root = '/gpfs/exfel/d/cal/caldb_store'\n",
+    "\n",
+    "# Operating conditions\n",
+    "mem_cells = 512  # Memory cells.\n",
+    "bias_voltage = 250.0  # Detector bias voltage.\n",
+    "capacitor = '5pF'  # Capacitor setting: 5pF or 50pF\n",
+    "photon_energy = 9.2  # Photon energy in kEv.\n",
+    "category = 0  # Whom to blame.\n",
+    "\n",
+    "# Correction parameters.\n",
+    "offset_corr = True  # Offset correction.\n",
+    "rel_gain = True  # Gain correction based on RelativeGain constant.\n",
+    "ff_map = True  # Gain correction based on FFMap constant.\n",
+    "gain_amp_map = True  # Gain correction based on GainAmpMap constant.\n",
+    "\n",
+    "# Output options\n",
+    "overwrite = True  # set to True if existing data should be overwritten\n",
+    "\n",
+    "sequences_per_node = 1  # sequence files to process per node\n",
+    "\n",
+    "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):\n",
+    "    from xfel_calibrate.calibrate import balance_sequences as bs\n",
+    "    return bs(in_folder, run, sequences, sequences_per_node, karabo_da)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "ExecuteTime": {
+     "end_time": "2018-12-03T15:19:56.990566Z",
+     "start_time": "2018-12-03T15:19:56.058378Z"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "from collections import OrderedDict\n",
+    "from pathlib import Path\n",
+    "from time import perf_counter\n",
+    "import gc\n",
+    "import re\n",
+    "import warnings\n",
+    "\n",
+    "import numpy as np\n",
+    "import h5py\n",
+    "\n",
+    "import matplotlib\n",
+    "matplotlib.use('agg')\n",
+    "import matplotlib.pyplot as plt\n",
+    "%matplotlib inline\n",
+    "\n",
+    "from calibration_client import CalibrationClient\n",
+    "from calibration_client.modules import CalibrationConstantVersion\n",
+    "import extra_data as xd\n",
+    "import extra_geom as xg\n",
+    "import pasha as psh\n",
+    "\n",
+    "from extra_data.components import LPD1M\n",
+    "\n",
+    "from cal_tools.enums import BadPixels\n",
+    "from cal_tools.lpdalgs import correct_lpd_frames\n",
+    "from cal_tools.tools import CalibrationMetadata, get_dir_creation_date, write_compressed_frames\n",
+    "from cal_tools.h5_copy_except import h5_copy_except_paths\n",
+    "from cal_tools.files import DataFile\n",
+    "from cal_tools.restful_config import restful_config"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Prepare environment"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "file_re = re.compile(r'^RAW-R(\\d{4})-(\\w+\\d+)-S(\\d{5})$')  # This should probably move to cal_tools\n",
+    "\n",
+    "out_folder = Path(out_folder)\n",
+    "out_folder.mkdir(exist_ok=True)\n",
+    "\n",
+    "output_source = output_source or input_source\n",
+    "\n",
+    "cal_db_root = Path(cal_db_root)\n",
+    "\n",
+    "metadata = CalibrationMetadata(metadata_folder or out_folder)\n",
+    "\n",
+    "if use_dir_creation_date:\n",
+    "    creation_time = get_dir_creation_date(in_folder, run)    \n",
+    "else:\n",
+    "    from datetime import datetime\n",
+    "    creation_time = datetime.now()\n",
+    "    \n",
+    "print(f'Using {creation_time.isoformat()} as creation time')\n",
+    "\n",
+    "# Pick all modules/aggregators or those selected.\n",
+    "if not karabo_da:\n",
+    "    if not modules:\n",
+    "        modules = list(range(16))\n",
+    "\n",
+    "    karabo_da = [f'LPD{i:02d}' for i in modules]\n",
+    "    \n",
+    "# Pick all sequences or those selected.\n",
+    "if not sequences:\n",
+    "    do_sequence = lambda seq: True\n",
+    "else:\n",
+    "    do_sequence = [int(x) for x in sequences].__contains__    \n",
+    "    \n",
+    "# List of detector sources.\n",
+    "det_inp_sources = [input_source.format(karabo_id=karabo_id, module_index=int(da[-2:])) for da in karabo_da]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Select data to process"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Open the entire input directory.\n",
+    "dc_all = xd.RunDirectory(Path(in_folder) / f'r{run:04d}') \\\n",
+    "    .select([(src, 'image.*') for src in det_inp_sources])\n",
+    "\n",
+    "out_folder = Path(out_folder) \n",
+    "\n",
+    "data_to_process = []\n",
+    "\n",
+    "for file_access in dc_all.files:\n",
+    "    match = file_re.match(Path(file_access.filename).stem)\n",
+    "    \n",
+    "    if match[2] not in karabo_da or not do_sequence(int(match[3])):\n",
+    "        continue\n",
+    "        \n",
+    "    outp_path = out_folder / 'CORR-R{run:04d}-{aggregator}-S{seq:05d}.h5'.format(\n",
+    "        run=int(match[1]), aggregator=match[2], seq=int(match[3]))\n",
+    "\n",
+    "    data_to_process.append((file_access.filename, match[2], outp_path))\n",
+    "\n",
+    "print('Files to process:')\n",
+    "for data_descr in sorted(data_to_process, key=lambda x: f'{x[1]}{x[0]}'):\n",
+    "    print('\\t'.join(data_descr[1::-1]))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Obtain and prepare calibration constants"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Connect to CalCat.\n",
+    "calcat_config = restful_config['calcat']\n",
+    "client = CalibrationClient(\n",
+    "    client_id=calcat_config['user-id'],\n",
+    "    client_secret=calcat_config['user-secret'],\n",
+    "    user_email=calcat_config['user-email'],\n",
+    "    base_api_url=calcat_config['base-api-url'],\n",
+    "    token_url=calcat_config['token-url'],\n",
+    "    refresh_url=calcat_config['refresh-url'],\n",
+    "    auth_url=calcat_config['auth-url'],\n",
+    "    scope='')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "dark_calibrations = {\n",
+    "    1: 'Offset',  # np.float32\n",
+    "    14: 'BadPixelsDark'  # should be np.uint32, but is np.float64\n",
+    "}\n",
+    "\n",
+    "dark_condition = [\n",
+    "    dict(parameter_id=1, value=bias_voltage),  # Sensor bias voltage\n",
+    "    dict(parameter_id=7, value=mem_cells),  # Memory cells\n",
+    "    dict(parameter_id=15, value=capacitor),  # Feedback capacitor\n",
+    "    dict(parameter_id=13, value=256),  # Pixels X\n",
+    "    dict(parameter_id=14, value=256),  # Pixels Y\n",
+    "]\n",
+    "\n",
+    "illuminated_calibrations = {\n",
+    "    20: 'BadPixelsFF',  # np.uint32\n",
+    "    42: 'GainAmpMap',  # np.float32\n",
+    "    43: 'FFMap',  # np.float32\n",
+    "    44: 'RelativeGain'  # np.float32\n",
+    "}\n",
+    "\n",
+    "illuminated_condition = dark_condition.copy()\n",
+    "illuminated_condition += [\n",
+    "    dict(parameter_id=3, value=photon_energy),  # Source energy\n",
+    "    dict(parameter_id=25, value=category)  # category\n",
+    "]\n",
+    "\n",
+    "const_data = {}\n",
+    "const_load_mp = psh.ProcessContext(num_workers=24)\n",
+    "\n",
+    "print('Querying calibration database', end='', flush=True)\n",
+    "start = perf_counter()\n",
+    "for calibrations, condition in [\n",
+    "    (dark_calibrations, dark_condition),\n",
+    "    (illuminated_calibrations, illuminated_condition)\n",
+    "]:\n",
+    "    resp = CalibrationConstantVersion.get_closest_by_time_by_detector_conditions(\n",
+    "        client, 'FXE_DET_LPD1M-1', list(calibrations.keys()),\n",
+    "        {'parameters_conditions_attributes': condition},\n",
+    "        karabo_da='', event_at=None, snapshot_at=None)\n",
+    "\n",
+    "    if not resp['success']:\n",
+    "        raise RuntimeError(resp)\n",
+    "\n",
+    "    for ccv in resp['data']:\n",
+    "        cc = ccv['calibration_constant']\n",
+    "        da = ccv['physical_detector_unit']['karabo_da']\n",
+    "        calibration_name = calibrations[cc['calibration_id']]\n",
+    "        \n",
+    "        dtype = np.uint32 if calibration_name.startswith('BadPixels') else np.float32\n",
+    "        \n",
+    "        const_data[(da, calibration_name)] = dict(\n",
+    "            path=Path(ccv['path_to_file']) / ccv['file_name'],\n",
+    "            dataset=ccv['data_set_name'],\n",
+    "            data=const_load_mp.alloc(shape=(256, 256, mem_cells, 3), dtype=dtype)\n",
+    "        )\n",
+    "    print('.', end='', flush=True)\n",
+    "        \n",
+    "total_time = perf_counter() - start\n",
+    "print(f'{total_time:.1f}s')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def load_constant_dataset(wid, index, const_descr):\n",
+    "    ccv_entry = const_data[const_descr]\n",
+    "    \n",
+    "    with h5py.File(cal_db_root / ccv_entry['path'], 'r') as fp:\n",
+    "        fp[ccv_entry['dataset'] + '/data'].read_direct(ccv_entry['data'])\n",
+    "        \n",
+    "    print('.', end='', flush=True)\n",
+    "\n",
+    "print('Loading calibration data', end='', flush=True)\n",
+    "start = perf_counter()\n",
+    "const_load_mp.map(load_constant_dataset, list(const_data.keys()))\n",
+    "total_time = perf_counter() - start\n",
+    "\n",
+    "print(f'{total_time:.1f}s')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ccv_offsets = {}\n",
+    "ccv_gains = {}\n",
+    "ccv_masks = {}\n",
+    "\n",
+    "def prepare_constants(wid, index, aggregator):\n",
+    "    consts = {calibration_name: entry['data']\n",
+    "              for (aggregator_, calibration_name), entry\n",
+    "              in const_data.items()\n",
+    "              if aggregator == aggregator_}\n",
+    "    \n",
+    "    if offset_corr and 'Offset' in consts:\n",
+    "        ccv_offsets[aggregator] = consts['Offset'].astype(np.float32)\n",
+    "    else:\n",
+    "        ccv_offsets[aggregator] = np.zeros((256, 256, mem_cells, 3), dtype=np.float32)\n",
+    "        \n",
+    "    ccv_gains[aggregator] = np.ones((256, 256, mem_cells, 3), dtype=np.float32)\n",
+    "    \n",
+    "    if 'BadPixelsDark' in consts:\n",
+    "        ccv_masks[aggregator] = consts['BadPixelsDark'].astype(np.uint32)\n",
+    "    else:\n",
+    "        ccv_masks[aggregator] = np.zeros((256, 256, mem_cells, 3), dtype=np.uint32)\n",
+    "    \n",
+    "    if rel_gain and 'RelativeGain' in consts:\n",
+    "        ccv_gains[aggregator] *= consts['RelativeGain']\n",
+    "        \n",
+    "    if ff_map and 'FFMap' in consts:\n",
+    "        ccv_gains[aggregator] *= consts['FFMap']\n",
+    "        \n",
+    "        if 'BadPixelsFF' in consts:\n",
+    "            np.bitwise_or(ccv_masks[aggregator], consts['BadPixelsFF'], out=ccv_masks[aggregator])\n",
+    "        \n",
+    "    if gain_amp_map and 'GainAmpMap' in consts:\n",
+    "        ccv_gains[aggregator] *= consts['GainAmpMap']\n",
+    "        \n",
+    "    print('.', end='', flush=True)\n",
+    "    \n",
+    "\n",
+    "print('Preparing constants', end='', flush=True)\n",
+    "start = perf_counter()\n",
+    "psh.ThreadContext(num_workers=len(karabo_da)).map(prepare_constants, karabo_da)\n",
+    "total_time = perf_counter() - start\n",
+    "print(f'{total_time:.1f}s')\n",
+    "\n",
+    "const_data.clear()  # Clear raw constants data now to save memory.\n",
+    "gc.collect();"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def correct_file(wid, index, work):\n",
+    "    filename, aggregator, outp_path = work\n",
+    "    module_index = int(aggregator[-2:])\n",
+    "    \n",
+    "    start = perf_counter()\n",
+    "    dc = xd.H5File(filename).select('*', 'image.*', require_all=True)\n",
+    "    inp_source = dc[input_source.format(karabo_id=karabo_id, module_index=module_index)]\n",
+    "    open_time = perf_counter() - start\n",
+    "    \n",
+    "    # Load raw data for this file.\n",
+    "    start = perf_counter()\n",
+    "    in_data = inp_source['image.data'].ndarray().squeeze()\n",
+    "    in_cell = inp_source['image.cellId'].ndarray().squeeze()\n",
+    "    in_pulse = inp_source['image.pulseId'].ndarray().squeeze()\n",
+    "    read_time = perf_counter() - start\n",
+    "    \n",
+    "    # Allocate output arrays.\n",
+    "    out_pixels = np.zeros((in_data.shape[0], 256, 256), dtype=np.float32)\n",
+    "    out_gain = np.zeros((in_data.shape[0], 256, 256), dtype=np.uint8)\n",
+    "    out_mask = np.zeros((in_data.shape[0], 256, 256), dtype=np.uint32)\n",
+    "            \n",
+    "    start = perf_counter()\n",
+    "    correct_lpd_frames(in_data, in_cell,\n",
+    "                       out_pixels, out_gain, out_mask,\n",
+    "                       ccv_offsets[aggregator], ccv_gains[aggregator], ccv_masks[aggregator],\n",
+    "                       num_threads=num_threads_per_worker)\n",
+    "    correct_time = perf_counter() - start\n",
+    "    \n",
+    "    image_counts = inp_source['image.data'].data_counts(labelled=False)\n",
+    "    \n",
+    "    start = perf_counter()\n",
+    "    if (not outp_path.exists() or overwrite) and image_counts.sum() > 0:\n",
+    "        fa = dc.files[0]\n",
+    "        sel_trains = np.isin(fa.train_ids, dc.train_ids)\n",
+    "        \n",
+    "        outp_source_name = output_source.format(karabo_id=karabo_id, module_index=module_index)\n",
+    "        \n",
+    "        DataFile.instrument_source_pattern = re.compile(r'^[\\w\\/-]+:\\w+$')\n",
+    "        with DataFile(outp_path, 'w') as outp_file:            \n",
+    "            outp_file.create_index(\n",
+    "                train_ids=dc.train_ids,\n",
+    "                timestamp=fa.file['INDEX/timestamp'][sel_trains],\n",
+    "                flag=fa.validity_flag[sel_trains])\n",
+    "            \n",
+    "            outp_source = outp_file.create_instrument_source(outp_source_name)\n",
+    "            \n",
+    "            outp_source.create_index(image=image_counts)\n",
+    "            outp_source.create_key('image.data', data=out_pixels)\n",
+    "            outp_source.create_key('image.cellId', data=in_cell)\n",
+    "            outp_source.create_key('image.pulseId', data=in_pulse)\n",
+    "            write_compressed_frames(\n",
+    "                out_gain, outp_file, f'INSTRUMENT/{outp_source_name}/image/gain', comp_threads=8)\n",
+    "            write_compressed_frames(\n",
+    "                out_mask, outp_file, f'INSTRUMENT/{outp_source_name}/image/mask', comp_threads=8)\n",
+    "            \n",
+    "            outp_file.create_metadata(like=dc)\n",
+    "    write_time = perf_counter() - start\n",
+    "    \n",
+    "    total_time = open_time + read_time + correct_time + write_time\n",
+    "    frame_rate = in_data.shape[0] / total_time\n",
+    "    \n",
+    "    print('{}\\t{}\\t{:.3f}\\t{:.3f}\\t{:.3f}\\t{:.3f}\\t{:.3f}\\t{}\\t{:.1f}'.format(\n",
+    "        wid, aggregator, open_time, read_time, correct_time, write_time, total_time,\n",
+    "        in_data.shape[0], frame_rate))\n",
+    "    \n",
+    "    in_data = None\n",
+    "    in_cell = None\n",
+    "    in_pulse = None\n",
+    "    out_pixels = None\n",
+    "    out_gain = None\n",
+    "    out_mask = None\n",
+    "    gc.collect()\n",
+    "\n",
+    "# 8/18, 479s\n",
+    "# 10/18, 464s\n",
+    "    \n",
+    "num_workers = 5\n",
+    "num_threads_per_worker = 24\n",
+    "print('worker\\tDA\\topen\\tread\\tcorrect\\twrite\\ttotal\\tframes\\trate')\n",
+    "    \n",
+    "start = perf_counter()\n",
+    "psh.ProcessContext(num_workers=num_workers).map(correct_file, data_to_process)\n",
+    "total_time = perf_counter() - start\n",
+    "\n",
+    "print(f'Total time: {total_time:.1f}s')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Data preview for first train"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "\n",
+    "geom = xg.LPD_1MGeometry.from_quad_positions(\n",
+    "    [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)])\n",
+    "\n",
+    "output_paths = [outp_path for _, _, outp_path in data_to_process if outp_path.exists()]\n",
+    "dc = xd.DataCollection.from_paths(output_paths).select_trains(np.s_[0])\n",
+    "\n",
+    "LPD1M._source_re = re.compile(r'(?P<detname>.+_LPD1M.*)\\/(?:DET|CORR)\\/(?P<modno>\\d+)CH')\n",
+    "det = LPD1M(dc, detector_name=karabo_id)\n",
+    "data = det.get_array('image.data')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Intensity histogram across all cells"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "left_edge_ratio = 0.01\n",
+    "right_edge_ratio = 0.99\n",
+    "\n",
+    "fig, ax = plt.subplots(num=1, clear=True, figsize=(15, 6))\n",
+    "values, bins, _ = ax.hist(np.ravel(data.data), bins=500, range=(-5000, 20000))\n",
+    "\n",
+    "def find_nearest_index(array, value):\n",
+    "    return (np.abs(array - value)).argmin()\n",
+    "\n",
+    "cum_values = np.cumsum(values)\n",
+    "vmin = bins[find_nearest_index(cum_values, cum_values[-1]*left_edge_ratio)]\n",
+    "vmax = bins[find_nearest_index(cum_values, cum_values[-1]*right_edge_ratio)]\n",
+    "\n",
+    "max_value = values.max()\n",
+    "ax.vlines([vmin, vmax], 0, max_value, color='red', linewidth=5, alpha=0.2)\n",
+    "ax.text(vmin, max_value, f'{left_edge_ratio*100:.0f}%',\n",
+    "        color='red', ha='center', va='bottom', size='large')\n",
+    "ax.text(vmax, max_value, f'{right_edge_ratio*100:.0f}%',\n",
+    "        color='red', ha='center', va='bottom', size='large')\n",
+    "ax.text(vmax+(vmax-vmin)*0.01, max_value/2, 'Colormap interval',\n",
+    "        color='red', rotation=90, ha='left', va='center', size='x-large')\n",
+    "\n",
+    "ax.set_xlim(-5000, 20000)\n",
+    "ax.set_ylim(0, max_value*1.1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### First memory cell"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fig, ax = plt.subplots(num=2, figsize=(15, 15), clear=True, nrows=1, ncols=1)\n",
+    "geom.plot_data_fast(data[:, 0, 0], ax=ax, vmin=vmin, vmax=vmax);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Train average"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "ExecuteTime": {
+     "end_time": "2018-11-13T18:24:57.547563Z",
+     "start_time": "2018-11-13T18:24:56.995005Z"
+    },
+    "scrolled": false
+   },
+   "outputs": [],
+   "source": [
+    "fig, ax = plt.subplots(num=3, figsize=(15, 15), clear=True, nrows=1, ncols=1)\n",
+    "geom.plot_data_fast(data[:, 0].mean(axis=1), ax=ax, vmin=vmin, vmax=vmax);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Lowest gain stage per pixel"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "highest_gain_stage = det.get_array('image.gain', pulses=np.s_[:]).max(axis=(1, 2))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fig, ax = plt.subplots(num=4, figsize=(15, 15), clear=True, nrows=1, ncols=1)\n",
+    "p = geom.plot_data_fast(highest_gain_stage, ax=ax, vmin=0, vmax=2);\n",
+    "\n",
+    "cb = ax.images[0].colorbar\n",
+    "cb.set_ticks([0, 1, 2])\n",
+    "cb.set_ticklabels(['High gain', 'Medium gain', 'Low gain'])"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "pycal",
+   "language": "python",
+   "name": "pycal"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.11"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/src/xfel_calibrate/notebooks.py b/src/xfel_calibrate/notebooks.py
index 299722f1da4069fc15933f42eeb1774fc58a413c..a26c4afdf8ea3da72a9de9300f0796b016ad517a 100644
--- a/src/xfel_calibrate/notebooks.py
+++ b/src/xfel_calibrate/notebooks.py
@@ -85,11 +85,11 @@ notebooks = {
                             "cluster cores": 8},
         },
         "CORRECT": {
-            "notebook": "notebooks/LPD/LPD_Correct_and_Verify.ipynb",
+            "notebook": "notebooks/LPD/LPD_Correct_Fast.ipynb",
             "concurrency": {"parameter": "sequences",
                             "default concurrency": [-1],
                             "use function": "balance_sequences",
-                            "cluster cores": 32},
+                            "cluster cores": 16},
         },
         "XGM_MINE": {
             "notebook": "notebooks/LPD/Mine_RadIntensity_vs_XGM_NBC.ipynb",