diff --git a/bin/slurm_calibrate.sh b/bin/slurm_calibrate.sh index 6b43b5065f23f4fdf0c4cbc0617a70de52cb1285..44be0e93e511c491fe6171badb0e0f49c708d1f2 100755 --- a/bin/slurm_calibrate.sh +++ b/bin/slurm_calibrate.sh @@ -52,7 +52,7 @@ fi echo "Running script" -${jupyter_path} nbconvert --to rst --ExecutePreprocessor.timeout=86400 --ExecutePreprocessor.allow_errors=True --TemplateExporter.exclude_input=True --execute ${nb_path} +${jupyter_path} nbconvert --to rst --ExecutePreprocessor.timeout=36000 --ExecutePreprocessor.allow_errors=True --TemplateExporter.exclude_input=True --execute ${nb_path} # stop the cluster if requested if [ "${uuid}" != "NO_CLUSTER" ] diff --git a/cal_tools/cal_tools/agipdlib.py b/cal_tools/cal_tools/agipdlib.py index 638dad7c1825f3a063d1424b2962c27355f71549..0b5ba63060d81833ded5fc64383d08860fb29b73 100644 --- a/cal_tools/cal_tools/agipdlib.py +++ b/cal_tools/cal_tools/agipdlib.py @@ -908,7 +908,6 @@ class AgipdCorrections: """ if not self.initialized: raise RuntimeError("Must call initialize() first!") - if not self.karabo_data_mode: agipd_base = self.agipd_base cidx = self.cidx @@ -969,7 +968,6 @@ class AgipdCorrections: if self.force_mg_if_below is not None and self.force_mg_if_below > 0: gain[(gain == 2) & ((im - self.offset[ cellid, ..., 1]) < self.force_mg_if_below)] = 1 - if self.force_hg_if_below is not None and self.force_hg_if_below > 0: gain[(gain > 0) & ((im - self.offset[ cellid, ..., 0]) < self.force_hg_if_below)] = 0 @@ -987,7 +985,6 @@ class AgipdCorrections: std = np.nanstd(im[cellid == c, ...], axis=0) self.sig_zero_mask[ c, std == 0] = BadPixels.DATA_STD_IS_ZERO.value - # for feedback we produced histograms for the first chunk if cidx == 0: H, xe, ye = np.histogram2d(im.flatten(), ga.flatten(), @@ -1001,31 +998,25 @@ class AgipdCorrections: range=[[4000, 8192], [0, 4]]) self.hists_dig_gain_vs_signal += H self.dig_signal_edges = (xe, ye) - # now get the correct constants depending on cell id offsetb = self.offset[cellid, ...] tmask = self.mask[cellid, ...] - # choose constants according to gain setting off = np.choose(gain, (offsetb[..., 0], offsetb[..., 1], offsetb[..., 2])) msk = np.choose(gain, (tmask[..., 0], tmask[..., 1], tmask[..., 2])) - # same for relative gain and then bad pixel mask if hasattr(self, "rel_gain"): # get the correct rel_gain depending on cell-id rc = self.rel_gain[cellid, ...] rel_cor = np.choose(gain, (rc[..., 0], rc[..., 1], rc[..., 2])) - # scale raw gain for use in the identifying snowy pixels rgain = None if self.melt_snow is not False: rgain = ga / t0[cellid, ...] - # subtract offset im -= off - # before doing relative gain correction we need to evaluate any # baseline shifts # as they are effectively and additional offset in the data @@ -1123,7 +1114,6 @@ class AgipdCorrections: msk |= self.sig_zero_mask[cellid, ...] if self.melt_snow is not False: msk |= snowmask - # for the first chunk output some statistics if cidx == 0: copim = copy.copy(im) @@ -1169,7 +1159,6 @@ class AgipdCorrections: self.ddset[cidx // sd:nidx // sd, ...] = im self.gdset[cidx // sd:nidx // sd, ...] = gain self.mdset[cidx // sd:nidx // sd, ...] = msk - self.outfile[agipd_base + "image/cellId"][cidx:nidx] = cellid self.outfile[agipd_base + "image/trainId"][cidx:nidx] = trainId self.outfile[agipd_base + "image/pulseId"][cidx:nidx] = pulseId @@ -1655,8 +1644,9 @@ class AgipdCorrections: for cname, mdata in const_yaml[dname].items(): when[cname] = mdata["creation-time"] if when[cname]: - with h5py.File(mdata["file-path"], "r") as cf: - cons_data[cname] = np.copy(cf[f"{dname}/{cname}/0/data"]) + cf = h5py.File(mdata["file-path"], "r") + cons_data[cname] = np.copy(cf[f"{dname}/{cname}/0/data"]) + cf.close() else: # Create empty constant using the list elements cons_data[cname] = \ diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb index d3832232a0956c87e676e2909479aefdd36b7552..afcd3daba756e66c480d60c6350631cfcc015290 100644 --- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb +++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb @@ -24,11 +24,10 @@ "source": [ "cluster_profile = \"noDB\"\n", "in_folder = \"/gpfs/exfel/exp/SPB/202030//p900119/raw\" # the folder to read data from, required\n", - "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/AGIPD_SPB4\" # the folder to output to, required\n", + "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/AGIPD_SPB0\" # the folder to output to, required\n", "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n", "modules = [-1] # modules to correct, set to -1 for all, range allowed\n", "run = 80 # runs to process, required\n", - "\n", "karabo_id = \"SPB_DET_AGIPD1M-1\" # karabo karabo_id\n", "karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators\n", "receiver_id = \"{}CH0\" # inset for receiver devices\n", @@ -172,7 +171,7 @@ " sequences = None\n", "\n", "CHUNK_SIZE = 250\n", - "MAX_PAR = 32\n", + "MAX_PAR = 16\n", "\n", "if in_folder[-1] == \"/\":\n", " in_folder = in_folder[:-1]\n", @@ -382,16 +381,15 @@ " from datetime import datetime\n", " import re\n", " import os\n", - " from influxdb import InfluxDBClient\n", + " # from influxdb import InfluxDBClient\n", " import subprocess\n", " from iCalibrationDB import Constants, Conditions, Detectors\n", " from cal_tools.enums import BadPixels\n", " from cal_tools.agipdlib import AgipdCorrections, SnowResolution\n", " from cal_tools.agipdlib import get_num_cells, get_acq_rate\n", - " \n", - " \n", - " #client = InfluxDBClient('exflqr18318', 8086, 'root', 'root', 'calstats')\n", "\n", + " #client = InfluxDBClient('exflqr18318', 8086, 'root', 'root', 'calstats')\n", + " \"\"\"\n", " def create_influx_entry(run, proposal, qm, sequence, filesize, chunksize,\n", " total_sequences, success, runtime, reason=\"\"):\n", " return {\n", @@ -418,6 +416,7 @@ " \"runtime\": runtime, \n", " }\n", " }\n", + " \"\"\"\n", " \n", " hists_signal_low = None\n", " hists_signal_high = None\n", @@ -431,26 +430,23 @@ " gain_stats = 0\n", " when = None\n", " err = None\n", - " \n", - " \n", + "\n", " try:\n", " start = datetime.now()\n", " success = True\n", " reason = \"\"\n", " filename, filename_out, channel, qm = inp\n", - " print(\"Have input\")\n", + "\n", " if max_cells == 0:\n", " max_cells = get_num_cells(filename, loc, channel)\n", " if max_cells is None:\n", " raise ValueError(f\"No raw images found for {qm}\")\n", " else:\n", " cells = np.arange(max_cells)\n", - " \n", " if acq_rate == 0.:\n", " acq_rate = get_acq_rate(filename, loc, channel)\n", " else:\n", " acq_rate = None\n", - "\n", " if dbparms[2] == 0:\n", " dbparms[2] = max_cells\n", " if dbparms[5] == 0:\n", @@ -464,10 +460,10 @@ " h5path = h5path[1:]\n", " if h5path_idx[0] == '/':\n", " h5path_idx = h5path_idx[1:]\n", - " \n", "\n", " infile = h5py.File(filename, \"r\", driver=\"core\")\n", " outfile = h5py.File(filename_out, \"w\")\n", + "\n", " try:\n", " agipd_corr = AgipdCorrections(infile, outfile, max_cells, channel, max_pulses,\n", " bins_gain_vs_signal, bins_signal_low_range,\n", @@ -480,7 +476,6 @@ " force_mg_if_below=force_mg_if_below, mask_noisy_adc=mask_noisy_adc,\n", " acquisition_rate=acq_rate, gain_setting=gain_setting,\n", " corr_bools=corr_bools)\n", - "\n", " blc_noise_threshold, blc_hmatch, melt_snow = special_opts\n", " if not corr_bools[\"only_offset\"]:\n", " blc_hmatch = False\n", @@ -491,9 +486,9 @@ " agipd_corr.get_valid_image_idx()\n", " except IOError:\n", " return\n", + "\n", " device = getattr(getattr(Detectors, dinstance), qm)\n", - " \n", - " # check if there is a yaml file in out_folder that has the device constants.\n", + "\n", " if not nodb:\n", " if const_yaml and device.device_name in const_yaml:\n", " print(fileparms != \"\")\n", @@ -510,17 +505,14 @@ " for irange in agipd_corr.get_iteration_range():\n", " agipd_corr.correct_agipd(irange)\n", " print(\"Iterated\")\n", - " print(\"All iterations are finished\")\n", " hists, edges = agipd_corr.get_histograms()\n", " hists_signal_low, hists_signal_high, hists_gain_vs_signal, hists_dig_gain_vs_signal, hist_pulses = hists\n", " low_edges, high_edges, signal_edges, dig_signal_edges = edges\n", " gain_stats = np.array(agipd_corr.gain_stats)\n", - " \n", " finally:\n", " outfile.close()\n", " infile.close()\n", " print(\"Closed files\")\n", - " \n", " except Exception as e:\n", " err = f\"Error: {e}\\nError traceback: {traceback.format_exc()}\"\n", " print(err)\n", @@ -598,9 +590,9 @@ " fout = os.path.abspath(\"{}/{}\".format(out_folder, (os.path.split(fname_in)[-1]).replace(\"RAW\", \"CORR\")))\n", " if first:\n", " first_files.append((fname_in, fout))\n", + " \n", " inp.append((fname_in, fout, i, qm))\n", " first = False\n", - " \n", "\n", " if len(inp) >= min(MAX_PAR, left):\n", " print(f\"Running {len(inp)} tasks parallel\")\n", @@ -609,7 +601,6 @@ " bins_dig_gain_vs_signal, max_pulses, dbparms, fileparms, nodb, chunk_size_idim,\n", " special_opts, il_mode, karabo_id, dinstance, force_hg_if_below, force_mg_if_below,\n", " mask_noisy_adc, acq_rate, gain_setting, corr_bools, h5path, h5path_idx, const_yaml)\n", - "\n", " r = view.map_sync(p, inp)\n", " #r = list(map(p, inp))\n", "\n", @@ -634,7 +625,6 @@ " hists_gain_vs_signal += hg.astype(np.float64)\n", " hists_dig_gain_vs_signal += hdg.astype(np.float64)\n", " gain_stats += gs\n", - " \n", " done = all(dones)\n", "\n", "print(f\"Corrected raw data of {cells} memory cells and {acq_rate} MHz acquisition rate\")" diff --git a/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb b/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb index 655182d2d13574fb14c4da0b1fe17889d4ef0b33..8f3df25d24065fb556f678d4e27dc4618fa06532 100644 --- a/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb +++ b/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb @@ -338,7 +338,7 @@ "\n", "# A dict to connect virtual device\n", "# to actual device name.\n", - "for i in range(len(modules)):\n", + "for i in modules:\n", " qm = f\"Q{i//4+1}M{i%4+1}\"\n", " if qm in mapped_files and not mapped_files[qm].empty():\n", " device = getattr(getattr(Detectors, dinstance), qm)\n", diff --git a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb index d88429fc776133a6ae582ec132eca76e3a2a4730..ee72412367ee4535ebb68c046c377db51f415d82 100644 --- a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb @@ -18,14 +18,14 @@ "outputs": [], "source": [ "cluster_profile = \"noDB\" # cluster profile to use\n", - "in_folder = \"/gpfs/exfel/exp/SPB/201922/p002566/raw/\" # the folder to read data from, required\n", - "out_folder = \"/gpfs/exfel/data/scratch/karnem/test/006\" # the folder to output to, required\n", + "in_folder = \"/gpfs/exfel/exp/FXE/201901/p002210/raw\" # the folder to read data from, required\n", + "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/jf\" # the folder to output to, required\n", "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n", - "run = 189 # runs to process, required\n", + "run = 249 # runs to process, required\n", "\n", - "karabo_id = \"SPB_IRDA_JNGFR\" # karabo prefix of Jungfrau devices\n", - "karabo_da = ['JNGFR02', 'JNGFR03'] # data aggregators\n", - "receiver_id = \"MODULE_{}\" # inset for receiver devices\n", + "karabo_id = \"FXE_XAD_JF1M\" # karabo prefix of Jungfrau devices\n", + "karabo_da = ['JNGFR01'] # data aggregators\n", + "receiver_id = \"RECEIVER-{}\" # inset for receiver devices\n", "receiver_control_id = \"CONTROL\" # inset for control devices\n", "path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # template to use for file name, double escape sequence number\n", "h5path = '/INSTRUMENT/{}/DET/{}:daqOutput/data' # path in H5 file under which images are located\n", @@ -35,7 +35,7 @@ "karabo_da_control = \"JNGFR01\" # file inset for control data\n", "\n", "use_dir_creation_date = True # use the creation data of the input dir for database queries\n", - "cal_db_interface = \"tcp://max-exfl017:8017#8025\" #\"tcp://max-exfl016:8015#8025\" # the database interface to use\n", + "cal_db_interface = \"tcp://max-exfl016:8017#8025\" #\"tcp://max-exfl016:8015#8025\" # the database interface to use\n", "cal_db_timeout = 180000 # timeout on caldb requests\",\n", "\n", "overwrite = True # set to True if existing data should be overwritten\n", @@ -45,8 +45,9 @@ "photon_energy = 9.2 # photon energy in keV\n", "chunk_size_idim = 1 # chunking size of imaging dimension, adjust if user software is sensitive to this.\n", "integration_time = 4.96 # integration time in us, will be overwritten by value in file\n", + "mem_cells = 0. # leave memory cells equal 0, as it is saved in control information starting 2019.\n", "gmapfile = \"\" # variable is not used but left here for back compatibility\n", - "db_module = [\"Jungfrau_M035\", \"Jungfrau_M273\"] # ID of module in calibration database\n", + "db_module = [\"Jungfrau_M233\"] # ID of module in calibration database\n", "manual_slow_data = False # if true, use manually entered bias_voltage and integration_time values\n", "chunk_size = 0\n", "\n", @@ -185,13 +186,23 @@ "\n", "\n", "control_path = h5path_cntrl.format(karabo_id_control, receiver_control_id)\n", - "this_run_mcells, sc_start = check_memoryCells(fp_path_contr.format(0), control_path)\n", - "if this_run_mcells == 1:\n", - " memoryCells = 1\n", - " print(f'Dark runs in single cell mode\\n storage cell start: {sc_start:02d}')\n", - "else:\n", - " memoryCells = 16\n", - " print(f'Dark runs in burst mode\\n storage cell start: {sc_start:02d}')\n", + "try:\n", + " this_run_mcells, sc_start = check_memoryCells(fp_path_contr.format(0), control_path)\n", + " if this_run_mcells == 1:\n", + " memoryCells = 1\n", + " print(f'Dark runs in single cell mode\\n storage cell start: {sc_start:02d}')\n", + " else:\n", + " memoryCells = 16\n", + " print(f'Dark runs in burst mode\\n storage cell start: {sc_start:02d}')\n", + "except Exception as e:\n", + " if \"Unable to open object\" in str(e):\n", + " if mem_cells==0:\n", + " memoryCells = 1\n", + " else:\n", + " memoryCells = mem_cells\n", + " print(f'Set memory cells to {memoryCells} as it is not saved in control information.')\n", + " else:\n", + " print(f\"Error trying to access memory cell from contol information: {e}\")\n", "\n", "print(f\"Integration time is {integration_time} us\")\n", "print(f\"Bias voltage is {bias_voltage} V\")\n", @@ -448,7 +459,10 @@ " while ind<max_ind:\n", " d = infile[h5path_f+\"/adc\"][ind:ind+chunk_size,...].astype(np.float32)\n", " g = infile[h5path_f+\"/gain\"][ind:ind+chunk_size,...]\n", - " m = infile[h5path_f+\"/memoryCell\"][ind:ind+chunk_size,...]\n", + " if h5path_f+\"/memoryCell\" in infile:\n", + " m = infile[h5path_f+\"/memoryCell\"][ind:ind+chunk_size,...]\n", + " else:\n", + " m = None\n", " print(f'To process: {d.shape}')\n", " inp.append((d,g,m, ind, k==0))\n", " ind += chunk_size\n", diff --git a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb index 0cec5017a78fa113f6c79e7ffbabd555b1cb55d2..bacf630eaf9b0c4b61d0773ddd8c33d0d7310150 100644 --- a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb +++ b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb @@ -309,6 +309,7 @@ " Mod_data[dname.format(const_name)] = OrderedDict()\n", " \n", " display(Markdown(f'##### {const_name}'))\n", + " print_once = True\n", " for gain in range(gainstages):\n", " if const_name == 'ThresholdsDark':\n", " if gain > 1:\n", @@ -348,6 +349,9 @@ " v), axis=0)\n", " except:\n", " Mod_data[k.format(const_name)][gain_names[gain]] = v\n", + " if np.count_nonzero(dval) == 0 and print_once:\n", + " display(Markdown(f'New and previous {const_name} are the same, hence there is no difference.'))\n", + " print_once = False\n", " # Plotting constant overall modules.\n", " display(Markdown(f'###### {glabel[gain]} ######'))\n", "\n", diff --git a/requirements.txt b/requirements.txt index ab85322866f0a07b0d2fa96d3ec77eb0204d3362..7f24418b5e9adec5f0716c7588f36c9f1942a700 100644 --- a/requirements.txt +++ b/requirements.txt @@ -8,11 +8,16 @@ extra_geom == 0.8.0 fabio == 0.9.0 gitpython == 3.1.0 h5py == 2.10.0 -influxdb == 5.2.3 iminuit == 1.3.8 +influxdb == 5.2.3 ipyparallel == 6.2.4 +ipykernel == 5.1.4 +ipython == 7.12.0 +ipython_genutils == 0.2.0 jupyter == 1.0.0 +jupyter_client == 5.3.4 jupyter_console == 6.1.0 +jupyter-core == 4.6.1 karabo_data == 0.7.0 lxml == 4.5.0 metadata_client == 3.0.5 diff --git a/setup.py b/setup.py index e8a538d6a6c60d1436fe1a383355e8caf15ad33f..b93537e269853e03be6300828022df7f61c1efbd 100644 --- a/setup.py +++ b/setup.py @@ -43,6 +43,7 @@ for ctypes in notebooks.values(): for nb in ctypes.values(): data_files.append(nb["notebook"]) data_files += nb.get("dep_notebooks", []) + data_files += nb.get("pre_notebooks", []) setup( name='European XFEL Offline Calibration', diff --git a/webservice/webservice.py b/webservice/webservice.py index 4053e32aea8ae78dd155823da43698248842c48c..f417bdf02c53553e89cbf6af60e3226b118ff9a5 100644 --- a/webservice/webservice.py +++ b/webservice/webservice.py @@ -794,7 +794,7 @@ async def server_runner(config, mode): sched_prio=str(config[action]['sched-prio']), action=action, instrument=instrument, cycle=cycle, proposal=proposal, - runs="_r".join(wait_runs), + runs="_".join([f"r{r}" for r in wait_runs]), time_stamp=ts, det_instance=karabo_id, request_time=request_time diff --git a/webservice/webservice.yaml b/webservice/webservice.yaml index b87d9b7d01ddbaa8904936c0b416d73cd5301246..ff2a6cca82d9ad8b173c2510a4446516c580f690 100644 --- a/webservice/webservice.yaml +++ b/webservice/webservice.yaml @@ -29,10 +29,12 @@ correct: cmd : > python -m xfel_calibrate.calibrate {detector} CORRECT --slurm-scheduling {sched_prio} + --slurm-mem 750 --request-time {request_time} --slurm-name {action}_{instrument}_{detector}_{cycle}_p{proposal}_r{runs} - --report-to {action}_{det_instance}_{time_stamp} + --report-to /gpfs/exfel/exp/{instrument}/{cycle}/p{proposal}/usr/Reports/{runs}/{det_instance}_{action}_{proposal}_{runs}_{time_stamp} --cal-db-timeout 300000 + --cal-db-interface tcp://max-exfl016:8015#8044 dark: in-folder: /gpfs/exfel/exp/{instrument}/{cycle}/p{proposal}/raw @@ -41,8 +43,10 @@ dark: cmd: > python -m xfel_calibrate.calibrate {detector} DARK --priority {priority} + --concurrency-par karabo_da --slurm-scheduling {sched_prio} --request-time {request_time} --slurm-name {action}_{instrument}_{detector}_{cycle}_p{proposal}_r{runs} - --report-to /gpfs/exfel/d/cal/caldb_store/xfel/reports/{detector}/{instrument}/{det_instance}/{action}/{action}_{proposal}_{runs}_{time_stamp} + --report-to /gpfs/exfel/d/cal/caldb_store/xfel/reports/{instrument}/{det_instance}/{action}/{action}_{proposal}_{runs}_{time_stamp} + --cal-db-interface tcp://max-exfl016:8015#8044 --db-output diff --git a/xfel_calibrate/calibrate.py b/xfel_calibrate/calibrate.py index 6a9e40efde73e4ccb8c0beb115ad856a292cf0b3..c745c0f4c62598978547b3eefdb5f6525709dc0d 100755 --- a/xfel_calibrate/calibrate.py +++ b/xfel_calibrate/calibrate.py @@ -291,7 +291,7 @@ def balance_sequences(in_folder, run, sequences, sequences_per_node, sequences_per_node += 1 nsplits = len(seq_nums) // sequences_per_node + 1 print("Changed to {} sequences per node".format(sequences_per_node)) - print("to have a maximum of 8 concurrent jobs") + print(f"to have a maximum of {max_nodes} concurrent jobs") return [l.tolist() for l in np.array_split(list(seq_nums), nsplits) if l.size > 0]