From 0b939c7dcdc6a9b02cf403e04634ee16ab2e309c Mon Sep 17 00:00:00 2001 From: ahmedk <karim.ahmed@xfel.eu> Date: Mon, 5 Feb 2024 15:59:28 +0100 Subject: [PATCH] remove jet color map, remove hard coded number for plot scales --- .../AGIPD/AGIPD_Correct_and_Verify.ipynb | 92 ++++++++++--------- 1 file changed, 48 insertions(+), 44 deletions(-) diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb index c4431088e..8c1b09452 100644 --- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb +++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb @@ -1031,10 +1031,15 @@ "metadata": {}, "outputs": [], "source": [ - "hist, bins_x, bins_y = calgs.histogram2d(raw[:,0,...].flatten().astype(np.float32),\n", - " raw[:,1,...].flatten().astype(np.float32),\n", - " bins=(100, 100),\n", - " range=[[4000, 8192], [4000, 8192]])\n", + "hist, bins_x, bins_y = calgs.histogram2d(\n", + " raw[:,0,...].flatten().astype(np.float32),\n", + " raw[:,1,...].flatten().astype(np.float32),\n", + " bins=(100, 100),\n", + " range=[\n", + " np.percentile(raw[:, 0, ...].astype(np.float32), [0.02, 99.8]),\n", + " np.percentile(raw[:, 1, ...].astype(np.float32), [0.02, 99.8]),\n", + " ],\n", + " )\n", "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Analogue gain (ADU)\")\n", "do_3d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Analogue gain (ADU)\")" ] @@ -1054,9 +1059,14 @@ "metadata": {}, "outputs": [], "source": [ - "hist, bins_x, bins_y = calgs.histogram2d(corrected.flatten().astype(np.float32),\n", - " gains.flatten().astype(np.float32), bins=(100, 3),\n", - " range=[[-50, 8192], [0, 3]])\n", + "hist, bins_x, bins_y = calgs.histogram2d(\n", + " corrected.flatten().astype(np.float32),\n", + " gains.flatten().astype(np.float32), bins=(100, 3),\n", + " range=[\n", + " np.percentile(corrected.flatten().astype(np.float32), [0, 100]),\n", + " [0, 3]\n", + " ],\n", + " )\n", "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Gain bit value\")" ] }, @@ -1087,25 +1097,21 @@ "metadata": {}, "outputs": [], "source": [ - "pulse_range = [np.min(pulseId[pulseId>=0]), np.max(pulseId[pulseId>=0])]\n", - "\n", + "pulse_range = np.percentile(pulseId.astype(np.float32), [0, 100])\n", "# Modify pulse_range, if only one pulse is selected.\n", "if pulse_range[0] == pulse_range[1]:\n", " pulse_range = [0, pulse_range[1]+int(acq_rate)]\n", "\n", "mean_data = np.nanmean(corrected, axis=(2, 3))\n", - "hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),\n", - " pulseId.flatten().astype(np.float32),\n", - " bins=(100, int(pulse_range[1])),\n", - " range=[[-50, 1000], pulse_range])\n", - "\n", - "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\")\n", - "do_3d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\")\n", - "\n", - "hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),\n", - " pulseId.flatten().astype(np.float32),\n", - " bins=(100, int(pulse_range[1])),\n", - " range=[[-50, 200000], pulse_range])\n", + "hist, bins_x, bins_y = calgs.histogram2d(\n", + " mean_data.flatten().astype(np.float32),\n", + " pulseId.flatten().astype(np.float32),\n", + " bins=(100, int(pulse_range[1])),\n", + " range=[\n", + " np.percentile(mean_data.astype(np.float32), [0, 100]),\n", + " pulse_range\n", + " ],\n", + ")\n", "\n", "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\")\n", "do_3d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\")" @@ -1143,7 +1149,7 @@ "fig = plt.figure(figsize=(10, 10))\n", "corrected_ave = np.nansum(corrected, axis=(2, 3))\n", "plt.scatter(corrected_ave.flatten()/10**6, blshift.flatten(), s=0.9)\n", - "plt.xlim(-1, 1000)\n", + "plt.xlim(np.percentile(corrected_ave.flatten()/10**6, [2, 98]))\n", "plt.grid()\n", "plt.xlabel('Illuminated corrected [MADU] ')\n", "_ = plt.ylabel('Estimated baseline shift [ADU]')" @@ -1176,8 +1182,8 @@ " fig = plt.figure(figsize=(20, 10))\n", " ax = fig.add_subplot(111)\n", " data = np.mean(raw[slice(*cell_sel.crange), 0, ...], axis=0)\n", - " vmin, vmax = get_range(data, 5)\n", - " ax = geom.plot_data_fast(data, ax=ax, cmap=\"jet\", vmin=vmin, vmax=vmax)\n", + " vmin, vmax = np.percentile(data, [5, 95])\n", + " ax = geom.plot_data_fast(data, ax=ax, vmin=vmin, vmax=vmax)\n", "else:\n", " print(\"Skipping mean RAW preview for single memory cell, \"\n", " f\"see single shot image for selected cell ID {cell_id_preview}.\")" @@ -1192,8 +1198,8 @@ "display(Markdown(f'Single shot of the RAW data from cell {cell_id_preview} \\n'))\n", "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "vmin, vmax = get_range(raw[cell_idx_preview, 0, ...], 5)\n", - "ax = geom.plot_data_fast(raw[cell_idx_preview, 0, ...], ax=ax, cmap=\"jet\", vmin=vmin, vmax=vmax)" + "vmin, vmax = np.percentile(raw[cell_idx_preview, 0, ...], [5, 95])\n", + "ax = geom.plot_data_fast(raw[cell_idx_preview, 0, ...], ax=ax, vmin=vmin, vmax=vmax)" ] }, { @@ -1209,8 +1215,8 @@ " fig = plt.figure(figsize=(20, 10))\n", " ax = fig.add_subplot(111)\n", " data = np.mean(corrected, axis=0)\n", - " vmin, vmax = get_range(data, 7)\n", - " ax = geom.plot_data_fast(data, ax=ax, cmap=\"jet\", vmin=-50, vmax=vmax)\n", + " vmin, vmax = np.percentile(data, [5, 95])\n", + " ax = geom.plot_data_fast(data, ax=ax, vmin=vmin, vmax=vmax)\n", "else:\n", " print(\"Skipping mean CORRECTED preview for single memory cell, \"\n", " f\"see single shot image for selected cell ID {cell_id_preview}.\")" @@ -1225,9 +1231,8 @@ "display(Markdown(f'A single shot of the CORRECTED image from cell {cell_id_preview} \\n'))\n", "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "vmin, vmax = get_range(corrected[cell_idx_preview], 7, -50)\n", - "vmin = - 50\n", - "ax = geom.plot_data_fast(corrected[cell_idx_preview], ax=ax, cmap=\"jet\", vmin=vmin, vmax=vmax)" + "vmin, vmax = np.percentile(corrected[cell_idx_preview], [5, 95])\n", + "ax = geom.plot_data_fast(corrected[cell_idx_preview], ax=ax, vmin=vmin, vmax=vmax)" ] }, { @@ -1238,10 +1243,9 @@ "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "vmin, vmax = get_range(corrected[cell_idx_preview], 5, -50)\n", "nbins = np.int((vmax + 50) / 2)\n", "h = ax.hist(corrected[cell_idx_preview].flatten(),\n", - " bins=nbins, range=(-50, vmax),\n", + " bins=nbins, range=(vmin, vmax),\n", " histtype='stepfilled', log=True)\n", "plt.xlabel('[ADU]')\n", "plt.ylabel('Counts')\n", @@ -1256,18 +1260,19 @@ "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "vmin, vmax = get_range(corrected, 10, -100)\n", + "vmin, vmax = np.percentile(corrected[cell_idx_preview], [5, 95])\n", "vmax = np.nanmax(corrected)\n", "if vmax > 50000:\n", " vmax=50000\n", "nbins = np.int((vmax + 100) / 5)\n", + "hist_range=(vmin, vmax)\n", "h = ax.hist(corrected.flatten(), bins=nbins,\n", - " range=(-100, vmax), histtype='step', log=True, label = 'All')\n", - "ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),\n", + " range=hist_range, histtype='step', log=True, label = 'All')\n", + "ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=hist_range,\n", " alpha=0.5, log=True, label='High gain', color='green')\n", - "ax.hist(corrected[gains == 1].flatten(), bins=nbins, range=(-100, vmax),\n", + "ax.hist(corrected[gains == 1].flatten(), bins=nbins, range=hist_range,\n", " alpha=0.5, log=True, label='Medium gain', color='red')\n", - "ax.hist(corrected[gains == 2].flatten(), bins=nbins, range=(-100, vmax),\n", + "ax.hist(corrected[gains == 2].flatten(), bins=nbins, range=hist_range,\n", " alpha=0.5, log=True, label='Low gain', color='yellow')\n", "ax.legend()\n", "ax.grid()\n", @@ -1293,8 +1298,8 @@ "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "ax = geom.plot_data_fast(np.max(gains, axis=0), ax=ax,\n", - " cmap=\"jet\", vmin=-1, vmax=3)" + "vmin, vmax = np.percentile(np.mean(gains, axis=0), [0, 100])\n", + "ax = geom.plot_data_fast(np.mean(gains, axis=0), ax=ax, vmin=vmin, vmax=vmax)" ] }, { @@ -1336,7 +1341,7 @@ "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "geom.plot_data_fast(np.log2(mask[cell_idx_preview]), ax=ax, vmin=0, vmax=32, cmap=\"jet\")" + "geom.plot_data_fast(np.log2(mask[cell_idx_preview]), ax=ax, vmin=0, vmax=32)" ] }, { @@ -1384,7 +1389,7 @@ "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "geom.plot_data_fast(np.mean(mask>0, axis=0), vmin=0, ax=ax, vmax=1, cmap=\"jet\")" + "geom.plot_data_fast(np.mean(mask>0, axis=0), vmin=0, ax=ax, vmax=1)" ] }, { @@ -1404,8 +1409,7 @@ "ax = fig.add_subplot(111)\n", "cm = np.copy(mask)\n", "cm[cm > BadPixels.NO_DARK_DATA.value] = 0\n", - "ax = geom.plot_data_fast(np.mean(cm>0, axis=0),\n", - " vmin=0, ax=ax, vmax=1, cmap=\"jet\")" + "ax = geom.plot_data_fast(np.mean(cm>0, axis=0), vmin=0, ax=ax, vmax=1)" ] } ], -- GitLab