From 0bdb6e2cb536d24ff88738ce1a1a9de62800b112 Mon Sep 17 00:00:00 2001
From: Karim Ahmed <karim.ahmed@xfel.eu>
Date: Mon, 11 Nov 2019 17:38:29 +0100
Subject: [PATCH] add bools to control correction

---
 ...orrectionNotebook_NewDAQ_FastCCD_NBC.ipynb | 353 +++++++++++-------
 1 file changed, 210 insertions(+), 143 deletions(-)

diff --git a/notebooks/FastCCD/CorrectionNotebook_NewDAQ_FastCCD_NBC.ipynb b/notebooks/FastCCD/CorrectionNotebook_NewDAQ_FastCCD_NBC.ipynb
index c80d17a47..7f3c35ece 100644
--- a/notebooks/FastCCD/CorrectionNotebook_NewDAQ_FastCCD_NBC.ipynb
+++ b/notebooks/FastCCD/CorrectionNotebook_NewDAQ_FastCCD_NBC.ipynb
@@ -18,13 +18,12 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T15:54:23.218849Z",
      "start_time": "2018-12-06T15:54:23.166497Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
     "in_folder = \"/gpfs/exfel/exp/SCS/201802/p002170/raw/\" # input folder, required\n",
-    "out_folder = '/gpfs/exfel/data/scratch/xcal/test/' # output folder, required\n",
+    "out_folder = '/gpfs/exfel/data/scratch/ahmedk/test/fastccd' # output folder, required\n",
     "path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' #  path template in hdf5 file\n",
     "path_inset = 'DA05'\n",
     "run = 277 # run number\n",
@@ -42,16 +41,23 @@
     "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n",
     "chunk_size_idim = 1 # H5 chunking size of output data\n",
     "overwrite = True # overwrite existing files\n",
-    "do_pattern_classification = True # classify split events\n",
     "sequences_per_node = 1 # sequences to correct per node\n",
     "limit_images = 0 # limit images per file \n",
-    "correct_offset_drift = False  # correct for offset drifts\n",
     "use_dir_creation_date = True # use dir creation data for calDB queries\n",
     "time_offset_days = 0 # offset in days for calibration parameters\n",
     "photon_energy_gain_map = 2. # energy in keV\n",
     "fix_temperature = 0. # fix temperature to this value, set to 0 to use slow control value\n",
     "flipped_between = [\"2019-02-01\", \"2019-04-02\"] # detector was flipped during this timespan\n",
     "temp_limits = 5 # limits within which temperature is considered the same\n",
+    "commonModeAxis = 1 # Axis along which common mode will be calculated (0: along rows, 1: along columns)\n",
+    "\n",
+    "# Correction Booleans\n",
+    "only_offset = False # Only apply offset correction\n",
+    "cti_corr = True # Apply CTI correction\n",
+    "relgain_corr = True # Apply relative gain correction\n",
+    "common_mode_corr = True # Apply commonMode correction\n",
+    "correct_offset_drift = False  # correct for offset drifts\n",
+    "do_pattern_classification = True # classify split events\n",
     "\n",
     "def balance_sequences(in_folder, run, sequences, sequences_per_node):\n",
     "    import glob\n",
@@ -74,6 +80,38 @@
     "        return sequences"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Fill dictionaries comprising bools and arguments for correction and data analysis\n",
+    "\n",
+    "# Here the herarichy and dependability for correction booleans are defined \n",
+    "corr_bools = {}\n",
+    "\n",
+    "# offset is at the bottom of AGIPD correction pyramid.\n",
+    "corr_bools[\"only_offset\"] = only_offset\n",
+    "\n",
+    "# Dont apply any corrections if only_offset is requested \n",
+    "if not only_offset:\n",
+    "    \n",
+    "    # Apply relative gain correction, only if requested\n",
+    "    if relgain_corr:\n",
+    "        corr_bools[\"relgain\"] = relgain_corr\n",
+    "    \n",
+    "        # Apply CTI correction, only if requested\n",
+    "        if cti_corr:\n",
+    "            corr_bools[\"cti\"] = cti_corr\n",
+    "        \n",
+    "    corr_bools[\"common_mode\"] = common_mode_corr\n",
+    "    corr_bools[\"offset_drift\"] = correct_offset_drift\n",
+    "    corr_bools[\"pattern_class\"] = do_pattern_classification\n",
+    "# Here the herarichy and dependability for data analysis booleans and arguments are defined \n",
+    "data_analysis_parms = {}"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -187,7 +225,7 @@
     "\n",
     "sensorSize = [x, y]\n",
     "chunkSize = 100 #Number of images to read per chunk\n",
-    "blockSize = [sensorSize[0]//2, sensorSize[1]//4] #Sensor area will be analysed according to blocksize\n",
+    "blockSize = [sensorSize[0]//2, sensorSize[1]] #Sensor area will be analysed according to blocksize\n",
     "xcal.defaultBlockSize = blockSize\n",
     "memoryCells = 1 #FastCCD has 1 memory cell\n",
     "#Specifies total number of images to proceed\n",
@@ -227,8 +265,7 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T15:54:24.088948Z",
      "start_time": "2018-12-06T15:54:24.059925Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
@@ -448,104 +485,100 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T15:54:28.343869Z",
      "start_time": "2018-12-06T15:54:28.271344Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
     "## relative gain\n",
+    "if corr_bools.get('relgain'):\n",
+    "    metadata = ConstantMetaData()\n",
+    "    relgain = Constants.CCD(DetectorTypes.fastCCD).RelativeGain()\n",
+    "    metadata.calibration_constant = relgain\n",
     "\n",
-    "metadata = ConstantMetaData()\n",
-    "relgain = Constants.CCD(DetectorTypes.fastCCD).RelativeGain()\n",
-    "metadata.calibration_constant = relgain\n",
-    "\n",
-    "# set the operating condition\n",
-    "condition = Conditions.Illuminated.CCD(bias_voltage=bias_voltage,\n",
-    "                                       integration_time=integration_time,\n",
-    "                                       gain_setting=0,\n",
-    "                                       temperature=temperature_k,\n",
-    "                                       pixels_x=1934,\n",
-    "                                       pixels_y=960, photon_energy=photon_energy_gain_map)\n",
-    "device = Detectors.fastCCD1\n",
+    "    # set the operating condition\n",
+    "    condition = Conditions.Illuminated.CCD(bias_voltage=bias_voltage,\n",
+    "                                           integration_time=integration_time,\n",
+    "                                           gain_setting=0,\n",
+    "                                           temperature=temperature_k,\n",
+    "                                           pixels_x=1934,\n",
+    "                                           pixels_y=960, photon_energy=photon_energy_gain_map)\n",
+    "    device = Detectors.fastCCD1\n",
     "\n",
     "\n",
-    "metadata.detector_condition = condition\n",
+    "    metadata.detector_condition = condition\n",
     "\n",
-    "# specify the a version for this constant\n",
-    "metadata.calibration_constant_version = Versions.Now(device=device)\n",
-    "metadata.retrieve(cal_db_interface)\n",
+    "    # specify the a version for this constant\n",
+    "    metadata.calibration_constant_version = Versions.Now(device=device)\n",
+    "    metadata.retrieve(cal_db_interface)\n",
     "\n",
-    "relGain = relgain.data[::-1,...]\n"
+    "    relGain = relgain.data[::-1,...]\n"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
-    "relGainCA = copy.copy(relGain)\n",
-    "relGainC = relGainCA[:relGainCA.shape[0]//2,...]\n",
-    "ctiA = np.ones(relGainCA.shape[:2])\n",
-    "cti = np.ones(relGainC.shape[:2])\n",
-    "i = 0\n",
-    "idx = (relGainC[i, :, 0] < 0.9) | (relGainC[i,:,0] > 1.1)\n",
-    "mn1 = np.nanmean(relGainC[i, ~idx, 0])\n",
-    "\n",
-    "for i in range(1, relGainC.shape[0]):\n",
+    "if corr_bools.get('cti'):\n",
+    "    relGainCA = copy.copy(relGain)\n",
+    "    relGainC = relGainCA[:relGainCA.shape[0]//2,...]\n",
+    "    ctiA = np.ones(relGainCA.shape[:2])\n",
+    "    cti = np.ones(relGainC.shape[:2])\n",
+    "    i = 0\n",
     "    idx = (relGainC[i, :, 0] < 0.9) | (relGainC[i,:,0] > 1.1)\n",
-    "    mn2 = np.nanmean(relGainC[i, ~idx, 0])\n",
-    "    cti[i,:] = mn2/mn1\n",
-    "ctiA[:relGainCA.shape[0]//2,...] = cti\n",
+    "    mn1 = np.nanmean(relGainC[i, ~idx, 0])\n",
     "\n",
-    "relGainC = relGainCA[relGainCA.shape[0]//2:,...]\n",
+    "    for i in range(1, relGainC.shape[0]):\n",
+    "        idx = (relGainC[i, :, 0] < 0.9) | (relGainC[i,:,0] > 1.1)\n",
+    "        mn2 = np.nanmean(relGainC[i, ~idx, 0])\n",
+    "        cti[i,:] = mn2/mn1\n",
+    "    ctiA[:relGainCA.shape[0]//2,...] = cti\n",
     "\n",
+    "    relGainC = relGainCA[relGainCA.shape[0]//2:,...]\n",
     "\n",
-    "cti = np.ones(relGainC.shape[:2])\n",
-    "i = -1\n",
-    "idx = (relGainC[i, :, 0] < 0.9) | (relGainC[i,:,0] > 1.1)\n",
-    "mn1 = np.nanmean(relGainC[i, ~idx, 0])\n",
     "\n",
-    "for i in range(relGainC.shape[0]-1, 1, -1):\n",
+    "    cti = np.ones(relGainC.shape[:2])\n",
+    "    i = -1\n",
     "    idx = (relGainC[i, :, 0] < 0.9) | (relGainC[i,:,0] > 1.1)\n",
-    "    mn2 = np.nanmean(relGainC[i, ~idx, 0])\n",
-    "    cti[i,:] = mn2/mn1\n",
-    "\n",
-    "ctiA[relGainCA.shape[0]//2:,...] = cti\n",
-    "\n",
-    "relGainCA = copy.copy(relGain)\n",
-    "relGainC = relGainCA[:relGainCA.shape[0]//2,...]\n",
-    "for i in range(relGainC.shape[1]):\n",
-    "    idx = (relGainC[:,i, 0] < 0.95) | (relGainC[:,i,0] > 1.05)\n",
-    "    relGainC[idx,i,0] = np.nanmean(relGainC[~idx,i,0])\n",
-    "    relGainC[idx,i,1] = np.nanmean(relGainC[~idx,i,1])\n",
-    "    relGainC[idx,i,2] = np.nanmean(relGainC[~idx,i,2])\n",
-    "relGainCA[:relGainCA.shape[0]//2,...] = relGainC\n",
-    "relGainC = relGainCA[relGainCA.shape[0]//2:,...]\n",
-    "for i in range(relGainC.shape[1]):\n",
-    "    idx = (relGainC[:,i, 0] < 0.95) | (relGainC[:,i,0] > 1.05)\n",
-    "    relGainC[idx,i,0] = np.nanmean(relGainC[~idx,i,0])\n",
-    "    relGainC[idx,i,1] = np.nanmean(relGainC[~idx,i,1])\n",
-    "    relGainC[idx,i,2] = np.nanmean(relGainC[~idx,i,2])\n",
-    "relGainCA[relGainCA.shape[0]//2:,...] = relGainC\n",
-    "relGainC = relGainCA*ctiA[...,None]\n",
-    "\n",
-    "relGain = relGainC"
+    "    mn1 = np.nanmean(relGainC[i, ~idx, 0])\n",
+    "\n",
+    "    for i in range(relGainC.shape[0]-1, 1, -1):\n",
+    "        idx = (relGainC[i, :, 0] < 0.9) | (relGainC[i,:,0] > 1.1)\n",
+    "        mn2 = np.nanmean(relGainC[i, ~idx, 0])\n",
+    "        cti[i,:] = mn2/mn1\n",
+    "\n",
+    "    ctiA[relGainCA.shape[0]//2:,...] = cti\n",
+    "\n",
+    "    relGainCA = copy.copy(relGain)\n",
+    "    relGainC = relGainCA[:relGainCA.shape[0]//2,...]\n",
+    "    for i in range(relGainC.shape[1]):\n",
+    "        idx = (relGainC[:,i, 0] < 0.95) | (relGainC[:,i,0] > 1.05)\n",
+    "        relGainC[idx,i,0] = np.nanmean(relGainC[~idx,i,0])\n",
+    "        relGainC[idx,i,1] = np.nanmean(relGainC[~idx,i,1])\n",
+    "        relGainC[idx,i,2] = np.nanmean(relGainC[~idx,i,2])\n",
+    "    relGainCA[:relGainCA.shape[0]//2,...] = relGainC\n",
+    "    relGainC = relGainCA[relGainCA.shape[0]//2:,...]\n",
+    "    for i in range(relGainC.shape[1]):\n",
+    "        idx = (relGainC[:,i, 0] < 0.95) | (relGainC[:,i,0] > 1.05)\n",
+    "        relGainC[idx,i,0] = np.nanmean(relGainC[~idx,i,0])\n",
+    "        relGainC[idx,i,1] = np.nanmean(relGainC[~idx,i,1])\n",
+    "        relGainC[idx,i,2] = np.nanmean(relGainC[~idx,i,2])\n",
+    "    relGainCA[relGainCA.shape[0]//2:,...] = relGainC\n",
+    "    relGainC = relGainCA*ctiA[...,None]\n",
+    "\n",
+    "    relGain = relGainC"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "import dateutil.parser\n",
     "flipped_between = [dateutil.parser.parse(d) for d in flipped_between]\n",
-    "flip_rgain = creation_time >= flipped_between[0] and creation_time <= flipped_between[1]\n",
+    "flip_rgain = creation_time.replace(tzinfo=None) >= flipped_between[0] and creation_time.replace(tzinfo=None) <= flipped_between[1]\n",
     "flip_rgain &= (metadata.calibration_constant_version.begin_at.replace(tzinfo=None) >= flipped_between[0] \n",
     "               and metadata.calibration_constant_version.begin_at.replace(tzinfo=None) <= flipped_between[1])\n",
     "print(\"Accounting for flipped detector: {}\".format(flip_rgain))\n"
@@ -558,21 +591,20 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T15:54:28.771629Z",
      "start_time": "2018-12-06T15:54:28.346051Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
     "#************************Calculators************************#\n",
     "\n",
-    "\n",
-    "cmCorrection = xcal.CommonModeCorrection([x, y], \n",
-    "                                         commonModeBlockSize, \n",
-    "                                         commonModeAxisR,\n",
-    "                                         nCells = memoryCells, \n",
-    "                                         noiseMap = noiseMap,\n",
-    "                                        runParallel=True,\n",
-    "                                        stats=True)\n",
+    "if corr_bools.get('common_mode'):\n",
+    "    cmCorrection = xcal.CommonModeCorrection([x, y],\n",
+    "                                             commonModeBlockSize, \n",
+    "                                             commonModeAxis,\n",
+    "                                             nCells = memoryCells,\n",
+    "                                             stride=10,\n",
+    "                                             runParallel=True,\n",
+    "                                             stats=True, minFrac=0)\n",
     "\n",
     "patternClassifierLH = xcal.PatternClassifier([x//2, y], \n",
     "                                              noiseMap[:x//2, :], \n",
@@ -612,8 +644,7 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:08:51.886343Z",
      "start_time": "2018-12-06T16:08:51.842837Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
@@ -638,7 +669,15 @@
     "                                         range=[-50, 1000],\n",
     "                                         nCells=memoryCells, \n",
     "                                         cores=cpuCores,\n",
-    "                                         blockSize=blockSize)"
+    "                                         blockSize=blockSize)\n",
+    "\n",
+    "\n",
+    "histCalCommonModeCor = xcal.HistogramCalculator([x, y], \n",
+    "                                             bins=500, \n",
+    "                                             range=[-50, 1000],\n",
+    "                                             nCells=memoryCells, \n",
+    "                                             cores=cpuCores,\n",
+    "                                             blockSize=blockSize)"
    ]
   },
   {
@@ -655,8 +694,7 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:08:52.441784Z",
      "start_time": "2018-12-06T16:08:52.437284Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
@@ -673,13 +711,13 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:08:53.042555Z",
      "start_time": "2018-12-06T16:08:53.034522Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
     "histCalOffsetCor.debug()\n",
-    "histCalPcorr.debug()\n"
+    "histCalCommonModeCor.debug()\n",
+    "histCalPcorr.debug()"
    ]
   },
   {
@@ -689,8 +727,7 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:08:53.551111Z",
      "start_time": "2018-12-06T16:08:53.531064Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
@@ -721,8 +758,7 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:10:55.917179Z",
      "start_time": "2018-12-06T16:09:01.603633Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
@@ -735,7 +771,8 @@
     "offsetMap = np.squeeze(offsetMap)\n",
     "noiseMap = np.squeeze(noiseMap)\n",
     "badPixelMap = np.squeeze(badPixelMap)\n",
-    "relGain = np.squeeze(relGain)\n",
+    "if corr_bools.get('relgain'):\n",
+    "       relGain = np.squeeze(relGain)\n",
     "for k, f in enumerate(file_list):\n",
     "    with h5py.File(f, 'r', driver='core') as infile:\n",
     "        out_fileb = \"{}/{}\".format(out_folder, f.split(\"/\")[-1])\n",
@@ -778,20 +815,31 @@
     "                if not flip_rgain:  # rgain was taken during flipped orientation\n",
     "                    fstride = -1\n",
     "                \n",
-    "                data = np.bitwise_and(data, 0b0011111111111111).astype(np.float32)                \n",
-    "                omap = np.repeat(offsetMap[...,None,:], data.shape[2], axis=2)\n",
-    "                rmap = np.repeat(relGain[:,::fstride,None,:], data.shape[2], axis=2)\n",
+    "                data = np.bitwise_and(data, 0b0011111111111111).astype(np.float32)\n",
+    "\n",
+    "                # creating maps for correction usage\n",
+    "                omap = np.repeat(offsetMap[...,None,:], data.shape[2], axis=2)                    \n",
     "                nmap = np.repeat(noiseMap[...,None,:], data.shape[2], axis=2)\n",
     "                bmap = np.repeat(badPixelMap[...,None,:], data.shape[2], axis=2)\n",
+    "\n",
+    "                # selecting element value related to the gain of the pixel.\n",
     "                offset = np.choose(gain, (omap[...,0], omap[...,1], omap[...,2]))\n",
-    "                rg = np.choose(gain, (rmap[...,0], rmap[...,1], rmap[...,2]))\n",
     "                noise = np.choose(gain, (nmap[...,0], nmap[...,1], nmap[...,2]))\n",
     "                bpix = np.choose(gain, (bmap[...,0], bmap[...,1], bmap[...,2]))\n",
+    "\n",
+    "                # same for relative gain if correction is available\n",
+    "                if corr_bools.get('relgain'):\n",
+    "                    rmap = np.repeat(relGain[:,::fstride,None,:], data.shape[2], axis=2)\n",
+    "                    rg = np.choose(gain, (rmap[...,0], rmap[...,1], rmap[...,2]))\n",
     "                \n",
+    "                # Apply offset correction\n",
     "                data -= offset\n",
-    "                data *= rg\n",
+    "\n",
+    "                if corr_bools.get('relgain'):\n",
+    "                    # Apply relative gain correction\n",
+    "                    data *= rg\n",
     "                \n",
-    "                if correct_offset_drift:\n",
+    "                if corr_bools.get(\"offset_drift\"):\n",
     "                    lhd = np.mean(data[x//2-10:x//2,y//2-5:y//2+5,:], axis=(0,1))\n",
     "                    data[:x//2, :, :] -= lhd\n",
     "                    drift_lh.append(lhd)\n",
@@ -811,7 +859,7 @@
     "                        mean_im = np.nanmean(data, axis=2)\n",
     "                        single_im = data[...,0]\n",
     "                        \n",
-    "                if do_pattern_classification:\n",
+    "                if corr_bools.get(\"pattern_class\"):\n",
     "                \n",
     "                    ddsetcm = ofile.create_dataset(h5path+\"/pixels_cm\",\n",
     "                                         oshape,\n",
@@ -831,9 +879,16 @@
     "\n",
     "                    patternClassifierLH._noisemap = noise[:x//2, :, :]\n",
     "                    patternClassifierUH._noisemap = noise[x//2:, :, :]\n",
+    "                    \n",
+    "                    # common mode correction\n",
+    "                    if corr_bools.get(\"common_mode\"):\n",
+    "                        cellTable = np.zeros(data.shape[2], np.int32) # Common mode correction\n",
+    "                        data = cmCorrection.correct(data.astype(np.float32), cellTable=cellTable, noiseMap=noise) \n",
     "\n",
-    "                    data = cmCorrection.correct(data)  # correct for the row common mode\n",
-    "                    ddsetcm[...] = np.moveaxis(data, 2, 0)\n",
+    "                        # correct for the row common mode\n",
+    "                        ddsetcm[...] = np.moveaxis(data, 2, 0)\n",
+    "\n",
+    "                        histCalCommonModeCor.fill(data)\n",
     "\n",
     "                    dataLH = data[:x//2, :, :]\n",
     "                    dataUH = data[x//2:, :, :]\n",
@@ -871,12 +926,11 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:10:56.094985Z",
      "start_time": "2018-12-06T16:10:55.918900Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
-    "if correct_offset_drift:\n",
+    "if corr_bools.get(\"offset_drift\"):\n",
     "    lhds = np.concatenate(drift_lh)\n",
     "    uhds = np.concatenate(drift_uh)\n",
     "    fig = plt.figure(figsize=(10,5))\n",
@@ -894,12 +948,11 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:10:56.126409Z",
      "start_time": "2018-12-06T16:10:56.096242Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
-    "if do_pattern_classification:\n",
+    "if corr_bools.get(\"pattern_class\"):\n",
     "    print(\"******************LOWER HEMISPHERE******************\\n\")\n",
     "\n",
     "    patternStatsLH = patternClassifierLH.getPatternStats()\n",
@@ -951,12 +1004,13 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:10:56.176160Z",
      "start_time": "2018-12-06T16:10:56.127853Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
-    "if do_pattern_classification:\n",
+    "if corr_bools.get(\"pattern_class\"):\n",
+    "    print(\"******************UPPER HEMISPHERE******************\\n\")\n",
+    "\n",
     "    patternStatsUH = patternClassifierUH.getPatternStats()\n",
     "    fig = plt.figure(figsize=(15,15))\n",
     "    ax = fig.add_subplot(4,4,1)\n",
@@ -996,9 +1050,7 @@
     "            pmap = ax.imshow(patternStatsUH[m][j], interpolation=\"nearest\", vmax=np.median(patternStatsUH[m][j]))\n",
     "            ax.set_title(m+\"(\"+str(j)+\")\")\n",
     "            cb = fig.colorbar(pmap)\n",
-    "            k+=1\n",
-    "\n",
-    "    print(\"******************UPPER HEMISPHERE******************\\n\")        "
+    "            k+=1\n"
    ]
   },
   {
@@ -1008,12 +1060,11 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:10:56.190150Z",
      "start_time": "2018-12-06T16:10:56.177570Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
-    "if do_pattern_classification:\n",
+    "if corr_bools.get(\"pattern_class\"):\n",
     "    t0 = PrettyTable()\n",
     "    t0.title = \"Total number of Counts after all corrections\"\n",
     "    t0.field_names = [\"Hemisphere\",\"Singles\", \"First-singles\", \"Clusters\"]\n",
@@ -1041,12 +1092,11 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:10:56.203219Z",
      "start_time": "2018-12-06T16:10:56.191509Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
-    "if do_pattern_classification:\n",
+    "if corr_bools.get(\"pattern_class\"):\n",
     "    doublesLH = patternStatsLH['doubles'][0] + patternStatsLH['doubles'][1] + patternStatsLH['doubles'][2] + patternStatsLH['doubles'][3]\n",
     "    triplesLH = patternStatsLH['triples'][0] + patternStatsLH['triples'][1] + patternStatsLH['triples'][2] + patternStatsLH['triples'][3]\n",
     "    quadsLH = patternStatsLH['quads'][0] + patternStatsLH['quads'][1] + patternStatsLH['quads'][2] + patternStatsLH['quads'][3]\n",
@@ -1070,12 +1120,11 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:10:56.212586Z",
      "start_time": "2018-12-06T16:10:56.204731Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
-    "if do_pattern_classification:\n",
+    "if corr_bools.get(\"pattern_class\"):\n",
     "    fig = plt.figure(figsize=(10,5))\n",
     "    ax = fig.add_subplot(1,2,1)\n",
     "    labels = ['singles', 'doubles', 'triples', 'quads']\n",
@@ -1097,8 +1146,7 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:13:12.889583Z",
      "start_time": "2018-12-06T16:13:11.122653Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
@@ -1115,7 +1163,17 @@
     "     },\n",
     "    \n",
     "     ]\n",
-    "     \n",
+    "\n",
+    "if corr_bools.get(\"pattern_class\") and corr_bools.get(\"common_mode\"):\n",
+    "    hcm,ecm,ccm,scm = histCalCommonModeCor.get()\n",
+    "    d.append({'x': ccm,\n",
+    "              'y': hcm,\n",
+    "              'y_err': np.sqrt(hcm[:]),\n",
+    "              'drawstyle': 'steps-mid',\n",
+    "              'errorstyle': 'bars',\n",
+    "              'errorcoarsing': 2,\n",
+    "              'label': 'CommonMode corr.'\n",
+    "               })\n",
     "\n",
     "fig = xana.simplePlot(d, aspect=1, x_label='Energy(ADU)', \n",
     "                      y_label='Number of occurrences', figsize='2col',\n",
@@ -1130,12 +1188,11 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:12:57.289742Z",
      "start_time": "2018-12-06T16:12:45.529734Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
-    "if do_pattern_classification:\n",
+    "if corr_bools.get(\"pattern_class\"):\n",
     "    h1,e1L,c1L,s1L = histCalPcorr.get()\n",
     "    h1s,e1Ls,c1Ls,s1Ls = histCalPcorrS.get()\n",
     "\n",
@@ -1174,8 +1231,7 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:11:08.317130Z",
      "start_time": "2018-12-06T16:11:05.788655Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
@@ -1185,7 +1241,7 @@
     "                       x_range=(0,y),\n",
     "                       y_range=(0,x), vmin=-50, vmax=500)\n",
     "\n",
-    "if do_pattern_classification:\n",
+    "if corr_bools.get(\"pattern_class\"):\n",
     "    fig = xana.heatmapPlot(mean_im_cc,\n",
     "                       x_label='Columns', y_label='Rows',\n",
     "                       lut_label='Signal (ADU)',\n",
@@ -1209,8 +1265,7 @@
     "ExecuteTime": {
      "end_time": "2018-12-06T16:11:10.908912Z",
      "start_time": "2018-12-06T16:11:08.318486Z"
-    },
-    "collapsed": true
+    }
    },
    "outputs": [],
    "source": [
@@ -1220,7 +1275,7 @@
     "                       x_range=(0,y),\n",
     "                       y_range=(0,x), vmin=-50, vmax=500)\n",
     "\n",
-    "if do_pattern_classification:\n",
+    "if corr_bools.get(\"pattern_class\"):\n",
     "    fig = xana.heatmapPlot(single_im_cc,\n",
     "                       x_label='Columns', y_label='Rows',\n",
     "                       lut_label='Signal (ADU)',\n",
@@ -1231,9 +1286,21 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
    "outputs": [],
    "source": []
   }
-- 
GitLab