diff --git a/notebooks/ePix100/Correction_ePix100_NBC.ipynb b/notebooks/ePix100/Correction_ePix100_NBC.ipynb index 4d7fbc3363291e4182834af7bf492b76f44f5f48..83ffb1e5983c8f2666be9b7f394ea54af5c83ad0 100644 --- a/notebooks/ePix100/Correction_ePix100_NBC.ipynb +++ b/notebooks/ePix100/Correction_ePix100_NBC.ipynb @@ -17,9 +17,9 @@ "metadata": {}, "outputs": [], "source": [ - "cluster_profile = \"noDB0\" # ipcluster profile to use\n", + "cluster_profile = \"noDB\" # ipcluster profile to use\n", "in_folder = \"/gpfs/exfel/exp/MID/202121/p002929/raw\" # input folder, required\n", - "out_folder = \"/home/cascella/scratch/epix-test/\" # output folder, required\n", + "out_folder = \"\" # output folder, required\n", "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n", "run = 126 # which run to read data from, required\n", "\n", @@ -121,11 +121,10 @@ "metadata": {}, "outputs": [], "source": [ - "\n", "h5path = h5path.format(karabo_id, receiver_id)\n", "h5path_t = h5path_t.format(karabo_id, receiver_id)\n", "h5path_cntrl = h5path_cntrl.format(karabo_id)\n", - "plot_unit = 'ADU'\n" + "plot_unit = 'ADU'" ] }, { @@ -337,10 +336,7 @@ " nCells=memoryCells,\n", " cores=cpuCores,\n", " blockSize=blockSize\n", - ")\n", - "\n", - "offsetCorrection.debug()\n", - "histCalOffsetCor.debug()" + ")" ] }, { @@ -565,7 +561,7 @@ " histCalRelGainCor.fill(data)\n", "\n", " ddset[...] = np.moveaxis(data, 2, 0)\n", - " \n", + "\n", " if pattern_classification:\n", " ddsetc = ofile.create_dataset(\n", " h5path+\"/pixels_classified\",\n", @@ -579,9 +575,8 @@ " chunks=(chunk_size_idim, oshape[1], oshape[2]),\n", " dtype=np.int32, compression=\"gzip\")\n", "\n", - "\n", " data_clu, patterns = patternClassifier.classify(data)\n", - " \n", + "\n", " data_clu[data_clu < (split_evt_primary_threshold*const_data[\"Noise\"])] = 0 # noqa\n", " ddsetc[...] = np.moveaxis(data_clu, 2, 0)\n", " ddsetp[...] = np.moveaxis(patterns, 2, 0)\n", @@ -592,13 +587,13 @@ " # absolute gain correction\n", " # changes data from ADU to keV (or n. of photons)\n", " if absolute_gain:\n", - " data = data*gain_cnst\n", + " data = data * gain_cnst\n", " if photon_energy > 0:\n", " data /= photon_energy\n", " histCalAbsGainCor.fill(data)\n", "\n", " if pattern_classification:\n", - " data_clu = data_clu*gain_cnst\n", + " data_clu = data_clu *gain_cnst\n", " if photon_energy > 0:\n", " data_clu /= photon_energy\n", " ddsetc[...] = np.moveaxis(data_clu, 2, 0)\n",