diff --git a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb index f7ccbfff05bcdba173017293ee2e0338f8c0986c..5dc2a73250f74a1c1b2e3f3cc73806ba0bac71c1 100644 --- a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb @@ -38,7 +38,8 @@ "cal_db_timeout = 180000 # timeout on caldb requests\n", "\n", "# Parameters affecting corrected data.\n", - "relative_gain = True # do relative gain correction\n", + "relative_gain = True # do relative gain correction.\n", + "strixel_sensor = False # reordering for strixel detector layout.\n", "limit_trains = 0 # ONLY FOR TESTING. process only first N trains, Use 0 to process all.\n", "chunks_ids = 32 # HDF chunk size for memoryCell and frameNumber.\n", "chunks_data = 1 # HDF chunk size for pixel data in number of frames.\n", @@ -208,6 +209,21 @@ "print(f\"Number of memory cells are {memory_cells}\")" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "strixel_transform = None\n", + "output_frame_shape = None\n", + "\n", + "if strixel_sensor:\n", + " from cal_tools.jfalgs import strixel_transform, strixel_shape\n", + " output_frame_shape = strixel_shape()\n", + " print('Strixel sensor transformation enabled')" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -340,8 +356,15 @@ "def correct_train(wid, index, d):\n", " d = d.astype(np.float32) # [cells, x, y]\n", " g = gain[index]\n", + " \n", + " # Copy gain over first to keep it at the original 3 for low gain.\n", + " if strixel_transform is not None:\n", + " strixel_transform(g, out=gain_corr[index, ...])\n", + " else:\n", + " gain_corr[index, ...] = g\n", "\n", " # Jungfrau gains 0[00], 1[01], 3[11]\n", + " # Change low gain to 2 for indexing purposes.\n", " g[g==3] = 2\n", "\n", " # Select memory cells\n", @@ -380,8 +403,14 @@ "\n", " msk = np.choose(g, np.moveaxis(mask_cell, -1, 0))\n", "\n", - " data_corr[index, ...] = d\n", - " mask_corr[index, ...] = msk" + " if strixel_transform is not None:\n", + " strixel_transform(d, out=data_corr[index, ...])\n", + " data_corr[index, :, Ydouble, Xdouble] /= strixel_double_norm\n", + "\n", + " strixel_transform(msk, out=mask_corr[index, ...])\n", + " else:\n", + " data_corr[index, ...] = d\n", + " mask_corr[index, ...] = msk" ] }, { @@ -464,8 +493,8 @@ " # and number of available trains to correct.\n", " seq_dc = H5File(sequence_file)\n", " seq_dc_adc = seq_dc[instrument_src_kda, \"data.adc\"]\n", - " dshape = seq_dc_adc.shape\n", - " corr_ntrains = seq_dc_adc.shape[0] # number of available trains to correct.\n", + " ishape = seq_dc_adc.shape # input shape.\n", + " corr_ntrains = ishape[0] # number of available trains to correct.\n", " all_train_ids = seq_dc_adc.train_ids\n", "\n", " # Raise a WARNING if this sequence has no trains to correct.\n", @@ -488,10 +517,17 @@ " # Load constants from the constants dictionary.\n", " # These arrays are used by `correct_train()` function\n", " offset_map, mask, gain_map = constants[local_karabo_da]\n", + " \n", + " # Determine total output shape.\n", + " if output_frame_shape is not None:\n", + " oshape = (*ishape[:-2], *output_frame_shape)\n", + " else:\n", + " oshape = ishape\n", "\n", " # Allocate shared arrays for corrected data. Used in `correct_train()`\n", - " data_corr = context.alloc(shape=(corr_ntrains, *dshape[1:]), dtype=np.float32)\n", - " mask_corr = context.alloc(shape=(corr_ntrains, *dshape[1:]), dtype=np.uint32)\n", + " data_corr = context.alloc(shape=oshape, dtype=np.float32)\n", + " gain_corr = context.alloc(shape=oshape, dtype=np.uint8)\n", + " mask_corr = context.alloc(shape=oshape, dtype=np.uint32)\n", "\n", " step_timer.start()\n", " # Overwrite seq_dc after eliminating empty trains or/and applying limited images.\n", @@ -551,10 +587,10 @@ " # Add main corrected `data.adc`` dataset and store corrected data.\n", " outp_source.create_key(\n", " \"data.adc\", data=data_corr,\n", - " chunks=(min(chunks_data, data_corr.shape[0]), *dshape[1:]))\n", + " chunks=(min(chunks_data, data_corr.shape[0]), *oshape[1:]))\n", "\n", " write_compressed_frames(\n", - " gain, outp_file, f\"{outp_source.name}/data/gain\", comp_threads=8)\n", + " gain_corr, outp_file, f\"{outp_source.name}/data/gain\", comp_threads=8)\n", " write_compressed_frames(\n", " mask_corr, outp_file, f\"{outp_source.name}/data/mask\", comp_threads=8)\n", "\n", @@ -739,14 +775,21 @@ "corrected_mean = np.mean(corrected, axis=1)\n", "_corrected_vmin = min(0.75*np.median(corrected_mean[corrected_mean > 0]), -0.5)\n", "_corrected_vmax = max(2.*np.median(corrected_mean[corrected_mean > 0]), 100)\n", - "geom.plot_data_fast(\n", - " corrected_mean,\n", - " ax=ax,\n", - " vmin=_corrected_vmin,\n", - " vmax=_corrected_vmax,\n", - " cmap=\"jet\",\n", - " colorbar={'shrink': 1, 'pad': 0.01},\n", + "\n", + "mean_plot_kwargs = dict(\n", + " vmin=_corrected_vmin, vmax=_corrected_vmax, cmap=\"jet\"\n", ")\n", + "\n", + "if not strixel_sensor:\n", + " geom.plot_data_fast(\n", + " corrected_mean,\n", + " ax=ax,\n", + " colorbar={'shrink': 1, 'pad': 0.01},\n", + " **mean_plot_kwargs\n", + " )\n", + "else:\n", + " ax.imshow(corrected_mean.squeeze(), aspect=10, **mean_plot_kwargs)\n", + " \n", "ax.set_title(f'{karabo_id} - Mean CORRECTED', size=18)\n", "\n", "plt.show()" @@ -763,14 +806,17 @@ "corrected_masked[mask != 0] = np.nan\n", "corrected_masked_mean = np.nanmean(corrected_masked, axis=1)\n", "del corrected_masked\n", - "geom.plot_data_fast(\n", - " corrected_masked_mean,\n", - " ax=ax,\n", - " vmin=_corrected_vmin,\n", - " vmax=_corrected_vmax,\n", - " cmap=\"jet\",\n", - " colorbar={'shrink': 1, 'pad': 0.01},\n", - ")\n", + "\n", + "if not strixel_sensor:\n", + " geom.plot_data_fast(\n", + " corrected_masked_mean,\n", + " ax=ax,\n", + " colorbar={'shrink': 1, 'pad': 0.01},\n", + " **mean_plot_kwargs\n", + " )\n", + "else:\n", + " ax.imshow(corrected_mean.squeeze(), aspect=10, **mean_plot_kwargs)\n", + "\n", "ax.set_title(f'{karabo_id} - Mean CORRECTED with mask', size=18)\n", "\n", "plt.show()" @@ -785,14 +831,23 @@ "display(Markdown((f\"#### A single image from train {tid}\")))\n", "\n", "fig, ax = plt.subplots(figsize=(18, 10))\n", - "geom.plot_data_fast(\n", - " corrected_train,\n", - " ax=ax,\n", + "\n", + "single_plot_kwargs = dict(\n", " vmin=min(0.75 * np.median(corrected_train[corrected_train > 0]), -0.5),\n", " vmax=max(2.0 * np.median(corrected_train[corrected_train > 0]), 100),\n", - " cmap=\"jet\",\n", - " colorbar={\"shrink\": 1, \"pad\": 0.01},\n", + " cmap=\"jet\"\n", ")\n", + "\n", + "if not strixel_sensor:\n", + " geom.plot_data_fast(\n", + " corrected_train,\n", + " ax=ax,\n", + " colorbar={\"shrink\": 1, \"pad\": 0.01},\n", + " **single_plot_kwargs\n", + " )\n", + "else:\n", + " ax.imshow(corrected_train.squeeze(), aspect=10, **single_plot_kwargs)\n", + "\n", "ax.set_title(f\"{karabo_id} - CORRECTED train: {tid}\", size=18)\n", "\n", "plt.show()" @@ -951,12 +1006,16 @@ "display(Markdown(f\"#### Bad pixels image for train {tid}\"))\n", "\n", "fig, ax = plt.subplots(figsize=(18, 10))\n", - "geom.plot_data_fast(\n", - " np.log2(mask_train),\n", - " ax=ax,\n", - " vmin=0, vmax=32, cmap=\"jet\",\n", - " colorbar={'shrink': 1, 'pad': 0.01},\n", - ")\n", + "if not strixel_sensor:\n", + " geom.plot_data_fast(\n", + " np.log2(mask_train),\n", + " ax=ax,\n", + " vmin=0, vmax=32, cmap=\"jet\",\n", + " colorbar={'shrink': 1, 'pad': 0.01},\n", + " )\n", + "else:\n", + " ax.imshow(np.log2(mask_train).squeeze(), vmin=0, vmax=32, cmap='jet', aspect=10)\n", + "\n", "plt.show()" ] }