From 1c7c7f0215ec38722cc7014fa96c114d4aac02c4 Mon Sep 17 00:00:00 2001 From: ahmedk <karim.ahmed@xfel.eu> Date: Fri, 9 Feb 2024 12:53:07 +0100 Subject: [PATCH] use nanpercentile with corrected data and replace deprecated np.int with int --- notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb index 3fa1efccd..0da892794 100644 --- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb +++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb @@ -1148,7 +1148,7 @@ "fig = plt.figure(figsize=(10, 10))\n", "corrected_ave = np.nansum(corrected, axis=(2, 3))\n", "plt.scatter(corrected_ave.flatten()/10**6, blshift.flatten(), s=0.9)\n", - "plt.xlim(np.percentile(corrected_ave/10**6, [2, 98]))\n", + "plt.xlim(np.nanpercentile(corrected_ave/10**6, [2, 98]))\n", "plt.grid()\n", "plt.xlabel('Illuminated corrected [MADU] ')\n", "_ = plt.ylabel('Estimated baseline shift [ADU]')" @@ -1216,7 +1216,7 @@ " display(Markdown(f'A mean across train: {tid}\\n'))\n", " fig = plt.figure(figsize=(20, 10))\n", " ax = fig.add_subplot(111)\n", - " data = np.mean(corrected, axis=0)\n", + " data = np.nanmean(corrected, axis=0)\n", " vmin, vmax = np.nanpercentile(data, [5, 99.9])\n", " ax = geom.plot_data_fast(data, ax=ax, vmin=vmin, vmax=vmax, cmap=cmap)\n", " pass\n", @@ -1249,7 +1249,7 @@ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", "vmin, vmax = get_range(corrected[cell_idx_preview], 5, -50)\n", - "nbins = np.int((vmax + 50) / 2)\n", + "nbins = int((vmax + 50) / 2)\n", "h = ax.hist(corrected[cell_idx_preview].flatten(),\n", " bins=nbins, range=(-50, vmax),\n", " histtype='stepfilled', log=True)\n", @@ -1272,7 +1272,7 @@ "vmax = np.nanmax(corrected)\n", "if vmax > 50000:\n", " vmax = 50000\n", - "nbins = np.int((vmax + 100) / 5)\n", + "nbins = int((vmax + 100) / 5)\n", "h = ax.hist(corrected.flatten(), bins=nbins,\n", " range=(-100, vmax), histtype='step', log=True, label = 'All')\n", "ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),\n", -- GitLab