diff --git a/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb b/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb index b23ef32bfcfde18bba57315e5f93fe120e7b07df..086968e2c6387690fa5b1b9ed524a136407584cf 100644 --- a/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb +++ b/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb @@ -30,7 +30,6 @@ }, "outputs": [], "source": [ - "cluster_profile = \"noDB\" # ipcluster profile to use\n", "in_folder = \"/gpfs/exfel/exp/SQS/202031/p900166/raw\" # input folder, required\n", "out_folder = '/gpfs/exfel/data/scratch/setoodeh' # output folder, required\n", "sequence = 0 # sequence file to use\n", @@ -43,8 +42,8 @@ "karabo_id = \"SQS_NQS_PNCCD1MP\" # karabo prefix of PNCCD devices\n", "receiver_id = \"PNCCD_FMT-0\" # inset for receiver devices\n", "path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data\n", - "h5path = '/INSTRUMENT/{}/CAL/{}:output/data/image/' # path in the HDF5 file the data is at\n", - "h5path_ctrl = '/CONTROL/{}/CTRL/TCTRL'\n", + "h5path = '{}/CAL/{}:output' # path in the HDF5 file the data is at\n", + "h5path_ctrl = '{}/CTRL/TCTRL'\n", "\n", "# Database access parameters:\n", "use_dir_creation_date = True # use dir creation date as data production reference date\n", @@ -68,9 +67,10 @@ "bad_pixel_noise_sigma = 4. # any pixel whose noise beyond this standard deviations is a bad pixel\n", "temp_limits = 5 # temperature limits in which calibration parameters are considered equal\n", "\n", - "run_parallel = True # for parallel computation\n", - "cpuCores = 40 # specifies the number of running cpu cores\n", - "operation_mode = '' # Detector operation mode, optional" + "cpuCores = 40 # specifies the number of running cpu cores\n", + "operation_mode = '' # Detector operation mode, optional\n", + "max_trains = 500 # Maximum number of trains to use for dark processing.\n", + "min_trains = 1 # Minimum number of trains required to proceed with dark processing." ] }, { @@ -91,9 +91,10 @@ "\n", "warnings.filterwarnings('ignore')\n", "\n", - "import h5py\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", + "import pasha as psh\n", + "from extra_data import RunDirectory\n", "\n", "%matplotlib inline\n", "import XFELDetAna.xfelprofiler as xprof\n", @@ -107,41 +108,19 @@ " save_const_to_h5,\n", " send_to_db,\n", ")\n", - "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", + "from iCalibrationDB import Conditions, Constants\n", "from iCalibrationDB.detectors import DetectorTypes\n", "from IPython.display import Markdown, display\n", "from prettytable import PrettyTable\n", "\n", "profiler = xprof.Profiler()\n", "profiler.disable()\n", - "from XFELDetAna.util import env\n", "\n", - "env.iprofile = cluster_profile\n", "from XFELDetAna import xfelpyanatools as xana\n", "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.plotting.util import prettyPlotting\n", "\n", - "prettyPlotting=True\n", - "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", - "from XFELDetAna.xfelreaders import ChunkReader" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:54:39.467334Z", - "start_time": "2018-12-06T10:54:39.427784Z" - } - }, - "outputs": [], - "source": [ - "def nImagesOrLimit(nImages, limit):\n", - " if limit == 0:\n", - " return nImages\n", - " else:\n", - " return min(nImages, limit)" + "prettyPlotting=True" ] }, { @@ -178,9 +157,6 @@ "print(f\"pnCCD size is: {pixels_x}x{pixels_y} pixels.\")\n", "\n", "ped_dir = \"{}/r{:04d}\".format(in_folder, run)\n", - "fp_name = path_template.format(run, karabo_da[0])\n", - "fp_path = '{}/{}'.format(ped_dir, fp_name)\n", - "filename = fp_path.format(sequence)\n", "h5path = h5path.format(karabo_id, receiver_id)\n", "\n", "# Output Folder Creation:\n", @@ -207,8 +183,9 @@ "print(f'Calibration database interface: {cal_db_interface}')\n", "print(f\"Sending constants to the calibration database: {db_output}\")\n", "print(f\"HDF5 path to data: {h5path}\")\n", - "print(f\"Reading data from: {filename}\")\n", - "print(f\"Run number: {run}\")" + "print(f\"Run number: {run}\")\n", + "\n", + "run_dc = RunDirectory(ped_dir)" ] }, { @@ -217,17 +194,28 @@ "metadata": {}, "outputs": [], "source": [ - "# Extracting slow data:\n", + "# extract slow data\n", "if karabo_da_control:\n", - " ctrl_fname = os.path.join(ped_dir, path_template.format(run, karabo_da_control)).format(sequence)\n", + " mdl_path = f\"{karabo_id}/MDL/{'{}'}\"\n", " ctrl_path = h5path_ctrl.format(karabo_id)\n", - " mdl_ctrl_path = f\"/CONTROL/{karabo_id}/MDL/\"\n", "\n", - " (bias_voltage, gain,\n", - " fix_temperature_top,\n", - " fix_temperature_bot) = extract_slow_data(karabo_id, karabo_da_control, ctrl_fname, ctrl_path,\n", - " mdl_ctrl_path, bias_voltage, gain,\n", - " fix_temperature_top, fix_temperature_bot)" + " bias_voltage, gain, fix_temperature_top, fix_temperature_bot = extract_slow_data( # noqa\n", + " run_dc,\n", + " ctrl_path,\n", + " mdl_path,\n", + " bias_voltage,\n", + " gain,\n", + " fix_temperature_top,\n", + " fix_temperature_bot,\n", + " )\n", + "\n", + "# Printing the Parameters Read from the Data File:\n", + "display(Markdown('### Detector Parameters'))\n", + "print(f\"Bias voltage is {bias_voltage:0.1f} V.\")\n", + "print(f\"Detector gain is set to 1/{int(gain)}.\")\n", + "print(f\"Detector integration time is set to {integration_time} ms\")\n", + "print(f\"Top pnCCD sensor is at temperature of {fix_temperature_top:0.2f} K\")\n", + "print(f\"Bottom pnCCD sensor is at temperature of {fix_temperature_bot:0.2f} K\")" ] }, { @@ -244,45 +232,22 @@ "# Reading Parameters such as Detector Bias, Gain, etc. from the Data:\n", "memoryCells = 1 # pnCCD has 1 memory cell\n", "sensorSize = [pixels_x, pixels_y]\n", - "blockSize = [sensorSize[0]//2, sensorSize[1]//2]# sensor area will be analysed according to blocksize\n", + "blockSize = [sensorSize[0]//2, sensorSize[1]//2] # sensor area will be analysed according to blocksize\n", "xcal.defaultBlockSize = blockSize\n", - "nImages = fastccdreaderh5.getDataSize(filename, h5path)[0] # specifies total number of images to proceed\n", - "nImages = nImagesOrLimit(nImages, number_dark_frames)\n", - "profile = False" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Printing the Parameters Read from the Data File:\n", - "display(Markdown('### Detector Parameters'))\n", - "print(f\"Bias voltage is {bias_voltage:0.2f} V.\")\n", - "print(f\"Detector gain is set to {gain}.\")\n", - "print(f\"Detector integration time is set to {integration_time} ms\")\n", - "print(f\"Top pnCCD sensor is at temperature of {fix_temperature_top:0.2f} K\")\n", - "print(f\"Bottom pnCCD sensor is at temperature of {fix_temperature_bot:0.2f} K\")\n", - "print(\"Number of dark images to analyze:\", nImages) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:54:41.584031Z", - "start_time": "2018-12-06T10:54:41.578462Z" - } - }, - "outputs": [], - "source": [ - "# Reading Files in Chunks:\n", "\n", - "# Chunk reader returns an iterator to access the data in the file within the ranges:\n", - "reader = ChunkReader(filename, fastccdreaderh5.readData, nImages, chunkSize, path=h5path, \n", - " pixels_x=pixels_x, pixels_y=pixels_y)" + "data_dc = run_dc.select(h5path, \"data.image\", require_all=True)\n", + "n_trains = data_dc[h5path, \"data.image\"].shape[0]\n", + "\n", + "if max_trains != 0:\n", + " n_trains = max_trains\n", + "if n_trains < min_trains:\n", + " raise ValueError(\n", + " f\"Files {data_dc.files} consists of less than\"\n", + " f\" the required number of {min_trains} trains to proceed with \"\n", + " \"dark processing.\")\n", + "\n", + "profile = False\n", + "run_parallel = False # for parallel computation" ] }, { @@ -299,8 +264,12 @@ "# Calculators:\n", "\n", "# noiseCal is a noise map calculator, which internally also produces a per-pixel mean map, i.e., an offset map:\n", - "noiseCal = xcal.NoiseCalculator(sensorSize, memoryCells, cores=cpuCores, blockSize=blockSize,\n", - " runParallel=run_parallel)" + "noiseCal = xcal.NoiseCalculator(\n", + " sensorSize, memoryCells,\n", + " cores=cpuCores,\n", + " blockSize=blockSize,\n", + " parallel=run_parallel,\n", + ")" ] }, { @@ -323,30 +292,12 @@ }, "outputs": [], "source": [ - "counter1 = 1 # To count how many \"if data.shape[2] >= chunkSize\" instances are there.\n", - "counter2 = 0 # To count how many \"if data.shape[2] < chunkSize\" instances are there.\n", - "chunkSize_new = 0 # See below\n", - "\n", - "for data in reader.readChunks():\n", - " data = data.astype(np.float32)\n", - " dx = np.count_nonzero(data, axis=(0, 1)) \n", - " data = data[:,:,dx != 0] # Getting rid of empty frames\n", - " # Some sequences may have less than 500 frames in them. To find out how many images there are, we will \n", - " # temporarily change chunkSize to be the same as whatever number of frames the last chunk of data has:\n", - " if data.shape[2] < chunkSize:\n", - " chunkSize_new = data.shape[2]\n", - " print(\"Number of images are less than chunkSize. chunkSize is temporarily changed to {}.\"\n", - " .format(chunkSize_new))\n", - " images = images + chunkSize_new\n", - " counter2 += 1 \n", - " else:\n", - " images = counter1*chunkSize + counter2*chunkSize_new\n", - " counter1 += 1\n", - "\n", - " noiseCal.fill(data) # Filling the histogram calculator with data\n", - " chunkSize = 100 # resetting the chunkSize to its default value for the next sequence or data-chunk\n", - "\n", - "print('A total number of {} images are processed.'.format(images))" + "%%time\n", + "data = data_dc.select_trains(np.s_[:n_trains])[h5path, \"data.image\"].ndarray()\n", + "data = np.moveaxis(data, 0, 2).astype(np.float32)\n", + "noiseCal.fill(data) # Filling the histogram calculator with data\n", + "\n", + "print(f'A total number of {n_trains} images are processed.')" ] }, { @@ -484,8 +435,14 @@ "source": [ "# Offset Correction:\n", "\n", - "offsetCorrection = xcal.OffsetCorrection(sensorSize, offsetMap, nCells = memoryCells, cores=cpuCores, gains=None,\n", - " runParallel=run_parallel, blockSize=blockSize)\n", + "offsetCorrection = xcal.OffsetCorrection(\n", + " sensorSize, offsetMap,\n", + " nCells=memoryCells,\n", + " cores=cpuCores,\n", + " gains=None,\n", + " parallel=run_parallel,\n", + " blockSize=blockSize,\n", + ")\n", "\n", "# Common Mode Correction:\n", "# In this method, the median of all (assuming stride = 1) pixels that are read out at the same time along a column \n", @@ -495,12 +452,15 @@ "# in a column per quadrant is smaller than the value set for minFrac parameter for a particular column, that column \n", "# will be ignored for calculation of common mode values and that column is not corrected for common mode.\n", "# minFrac = 0 means no column is ignored except those containing nan values (bad pixels):\n", - "cmCorrection = xcal.CommonModeCorrection(sensorSize,\n", - " commonModeBlockSize,\n", - " commonModeAxis, parallel=run_parallel, dType=np.float32, stride=1,\n", - " noiseMap=noiseMap.astype(np.float32), minFrac=0)\n", - "\n", - "cmCorrection.debug()" + "cmCorrection = xcal.CommonModeCorrection(\n", + " sensorSize,\n", + " commonModeBlockSize,\n", + " commonModeAxis,\n", + " parallel=run_parallel,\n", + " dType=np.float32, stride=1,\n", + " noiseMap=noiseMap.astype(np.float32),\n", + " minFrac=0,\n", + ")" ] }, { @@ -515,10 +475,10 @@ "\n", "# For offset corrected data:\n", "histCalCorrected = xcal.HistogramCalculator(sensorSize, bins=bins, range=bin_range, memoryCells=memoryCells,\n", - " cores=cpuCores, gains=None, blockSize=blockSize)\n", + " cores=cpuCores, parallel=run_parallel, gains=None, blockSize=blockSize)\n", "# For common mode corrected data:\n", "histCalCMCorrected = xcal.HistogramCalculator(sensorSize, bins=bins, range=bin_range, memoryCells=memoryCells,\n", - " cores=cpuCores, gains=None, blockSize=blockSize)" + " cores=cpuCores, parallel=run_parallel, gains=None, blockSize=blockSize)" ] }, { @@ -536,37 +496,34 @@ "metadata": {}, "outputs": [], "source": [ - "counter1 = 1 # To count how many \"if data.shape[2] >= chunkSize\" instances are there.\n", - "counter2 = 0 # To count how many \"if data.shape[2] < chunkSize\" instances are there.\n", - "chunkSize_new = 0 # See below\n", - "\n", - "for data in reader.readChunks():\n", - " data = data.astype(np.float32)\n", - " dx = np.count_nonzero(data, axis=(0, 1))\n", - " data = data[:,:,dx != 0]\n", + "%%time\n", + "def correct_image(wid, idx, d):\n", + " d -= offsetMap.data[..., 0] # Offset correction\n", + "\n", + " #offset_corr_data = copy.copy(data) # I am copying this so that I can have access to it in the table below\n", + " histCalCorrected.fill(d)\n", + "\n", + " offset_corr_data[..., idx] = d\n", + " \n", + " cellTable=np.zeros(1, np.int32) # Common mode correction\n", " \n", - " # Some sequences may have less than 500 frames in them. To find out how many images there are, we will \n", - " # temporarily change chunkSize to be the same as whatever number of frames the last chunk of data has:\n", - " if data.shape[2] < chunkSize:\n", - " chunkSize_new = data.shape[2]\n", - " print(\"Number of images are less than chunkSize. chunkSize is temporarily changed to {}.\"\n", - " .format(chunkSize_new))\n", - " images = images + chunkSize_new\n", - " counter2 += 1 \n", - " else:\n", - " images = counter1*chunkSize + counter2*chunkSize_new\n", - " counter1 += 1\n", - " \n", - " data -= offsetMap.data # Offset correction\n", - " offset_corr_data = copy.copy(data) # I am copying this so that I can have access to it in the table below\n", - " histCalCorrected.fill(data)\n", - " cellTable=np.zeros(data.shape[2], np.int32) # Common mode correction\n", - " data = cmCorrection.correct(data.astype(np.float32), cellTable=cellTable) \n", - " histCalCMCorrected.fill(data)\n", - " noiseCal.fill(data) # Filling calculators with data\n", - " chunkSize = 100 # resetting the chunkSize to its default value for the next sequence or data-chunk\n", - "\n", - "print('A total number of {} images are processed.'.format(images))\n", + " d = cmCorrection.correct(d.astype(np.float32), cellTable=cellTable) \n", + " \n", + " histCalCMCorrected.fill(d)\n", + " \n", + " noiseCal.fill(d) # Filling calculators with data\n", + " \n", + " corr_data[..., idx] = np.squeeze(d)\n", + "\n", + "context = psh.context.ThreadContext(num_workers=10)\n", + "\n", + "corr_data = context.alloc(\n", + " shape=(sensorSize[0], sensorSize[1], n_trains), dtype=np.float32)\n", + "offset_corr_data = context.alloc(\n", + " shape=(sensorSize[0], sensorSize[1], n_trains), dtype=np.float32)\n", + "\n", + "context.map(correct_image, np.moveaxis(copy.copy(data), 2, 0))\n", + "\n", "print(\"Offset and common mode corrections are applied.\")" ] }, @@ -630,12 +587,12 @@ "t0.title = \"Comparison of the First Round of Corrections - Bad Pixels Not Excluded\"\n", "t0.field_names = [\"Dark Pedestal After Offset Correction\", \"Dark Pedestal After Offset and Common Mode Corrections\"]\n", "t0.add_row([\"Mean: {:0.3f} ADU\".format(np.mean(offset_corr_data)), \"Mean: {:0.3f} ADU\"\n", - " .format(np.mean(data))])\n", + " .format(np.mean(corr_data))])\n", "t0.add_row([\"Median: {:0.3f} ADU\".format(np.median(offset_corr_data)), \"Median: {:0.3f} ADU\"\n", - " .format(np.median(data))])\n", + " .format(np.median(corr_data))])\n", "t0.add_row([\"Standard Deviation: {:0.3f} ADU\".format(np.std(offset_corr_data)), \n", " \"Standard Deviation: {:0.3f} ADU\"\n", - " .format(np.std(data))])\n", + " .format(np.std(corr_data))])\n", "print(t0,'\\n')" ] }, @@ -756,7 +713,7 @@ "metadata": {}, "outputs": [], "source": [ - "event_threshold = sigmaNoise*np.median(noiseMapCM) # for exclusion of possible cosmic ray events\n", + "event_threshold = sigmaNoise * np.median(noiseMapCM) # for exclusion of possible cosmic ray events\n", "noiseCal.setBadPixelMask(bad_pixels != 0) # setting bad pixels map for the noise calculator" ] }, @@ -766,11 +723,12 @@ "metadata": {}, "outputs": [], "source": [ - "cmCorrection = xcal.CommonModeCorrection(sensorSize,\n", - " commonModeBlockSize,\n", - " commonModeAxis, parallel=run_parallel, dType=np.float32, stride=1,\n", - " noiseMap=noiseMapCM.astype(np.float32), minFrac=0)\n", - "cmCorrection.debug()" + "cmCorrection = xcal.CommonModeCorrection(\n", + " sensorSize,\n", + " commonModeBlockSize,\n", + " commonModeAxis, parallel=run_parallel, dType=np.float32, stride=1,\n", + " noiseMap=noiseMapCM.astype(np.float32), minFrac=0,\n", + ")" ] }, { @@ -779,46 +737,43 @@ "metadata": {}, "outputs": [], "source": [ - "counter1 = 1 # To count how many \"if data.shape[2] >= chunkSize\" instances are there.\n", - "counter2 = 0 # To count how many \"if data.shape[2] < chunkSize\" instances are there.\n", - "chunkSize_new = 0 # See below\n", - "\n", - "for data in reader.readChunks():\n", - " data = data.astype(np.float32)\n", - " dx = np.count_nonzero(data, axis=(0, 1))\n", - " data = data[:,:,dx != 0]\n", - " data_mask = np.repeat(bad_pixels, data.shape[2], axis=2) # Converting bad_pixels to the same shape as the data\n", - " data[data_mask != 0] = np.nan # masking data for bad pixels and equating the values to np.nan\n", - " \n", - " # Some sequences may have less than 500 frames in them. To find out how many images there are, we will \n", - " # temporarily change chunkSize to be the same as whatever number of frames the last chunk of data has:\n", - " if data.shape[2] < chunkSize:\n", - " chunkSize_new = data.shape[2]\n", - " print(\"Number of images are less than chunkSize. chunkSize is temporarily changed to {}.\"\n", - " .format(chunkSize_new))\n", - " images = images + chunkSize_new\n", - " counter2 += 1 \n", - " else:\n", - " images = counter1*chunkSize + counter2*chunkSize_new\n", - " counter1 += 1\n", - " \n", - " data_copy = offsetCorrection.correct(copy.copy(data))\n", - " cellTable=np.zeros(data_copy.shape[2], np.int32)\n", - " data_copy = cmCorrection.correct(data_copy.astype(np.float32), cellTable=cellTable)\n", - " data[data_copy > event_threshold] = np.nan # discarding events caused by cosmic rays\n", - " #data = np.ma.MaskedArray(data, np.isnan(data), fill_value=np.nan) # masking cosmics,default fill_value = 1e+20\n", + "cellTable = np.zeros(1, np.int32)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%time\n", + "def correct_image(wid, idx, d):\n", " \n", - " data -= offsetMap.data # Offset correction\n", - " offset_corr_data2 = copy.copy(data) # I am copying this so that I can have access to it in the table below\n", - " histCalCorrected.fill(data)\n", - " cellTable=np.zeros(data.shape[2], np.int32) # Common mode correction\n", - " data = cmCorrection.correct(data.astype(np.float32), cellTable=cellTable) \n", - " histCalCMCorrected.fill(data)\n", - " noiseCal.fill(data) # Filling calculators with data\n", - " chunkSize = 100 # resetting the chunkSize to its default value for the next sequence or data-chunk\n", + " d[np.squeeze(bad_pixels) != 0] = np.nan # masking data for bad pixels and equating the values to np.nan\n", + " d_off = offsetCorrection.correct(copy.copy(d)) # Offset correction\n", + "\n", + " d_off = cmCorrection.correct(d_off.astype(np.float32), cellTable=cellTable)\n", + " d[np.squeeze(d_off) > event_threshold] = np.nan # discarding events caused by cosmic rays\n", + " d -= offsetMap.data[..., 0] # Offset correction\n", + " offset_corr_data2[..., idx] = d # I am copying this so that I can have access to it in the table below\n", + " histCalCorrected.fill(d)\n", + "\n", + " d = cmCorrection.correct(d, cellTable=cellTable)\n", + " histCalCMCorrected.fill(d)\n", + " noiseCal.fill(d) # Filling calculators with data\n", + " corr_data[..., idx] = np.squeeze(d)\n", + "\n", + "context = psh.context.ThreadContext(num_workers=10)\n", + "\n", + "corr_data = context.alloc(\n", + " shape=(sensorSize[0], sensorSize[1], n_trains), dtype=np.float32)\n", + "offset_corr_data2 = context.alloc(\n", + " shape=(sensorSize[0], sensorSize[1], n_trains), dtype=np.float32)\n", + "\n", + "context.map(correct_image, np.moveaxis(copy.copy(data), 2, 0))\n", "\n", "print(\"Final iteration is Performed.\")\n", - "print('A total number of {} images are processed.'.format(images))" + "print(f\"A total number of {n_trains} images are processed.\")" ] }, { @@ -827,7 +782,7 @@ "metadata": {}, "outputs": [], "source": [ - "noiseMapCM_2nd = noiseCal.get().filled(np.nan) # the masked pixels are filled with nans\n", + "noiseMapCM_2nd = noiseCal.get().filled(np.nan) # the masked pixels are filled with nans\n", "ho2, eo2, co2, so2 = histCalCorrected.get()\n", "hCM2, eCM2, cCM2, sCM2 = histCalCMCorrected.get()" ] @@ -858,7 +813,7 @@ " 'drawstyle': 'steps-post',\n", " 'color': 'red',\n", " 'ecolor': 'crimson',\n", - " 'label': 'Offset and Common Mode Corrected Signal (BP Incl.)' \n", + " 'label': 'Offset and Common Mode Corrected Signal (BP Incl.)'\n", " },\n", " {'x': co2,\n", " 'y': ho2,\n", @@ -873,8 +828,8 @@ " 'label': 'Offset and Common Mode Corrected Signal (BP Excl.)'\n", " }]\n", "\n", - "fig = xana.simplePlot(do_Final, figsize='2col', aspect=1, x_label = 'ADU', \n", - " y_label=\"Counts (logarithmic scale)\", y_log=True, x_range = bin_range, \n", + "fig = xana.simplePlot(do_Final, figsize='2col', aspect=1, x_label = 'ADU',\n", + " y_label=\"Counts (logarithmic scale)\", y_log=True, x_range = bin_range,\n", " y_range = (0.02, 1e8),\n", " legend='top-right-frame-1col', title = 'Comparison of Corrections')\n", "\n", @@ -882,11 +837,11 @@ "t0.title = \"Comparison of the Second Round of Corrections - Bad Pixels Excluded\"\n", "t0.field_names = [\"Dark Pedestal After Offset Correction\", \"Dark Pedestal After Offset and Common Mode Corrections\"]\n", "t0.add_row([\"Mean: {:0.3f} ADU\".format(np.nanmean(offset_corr_data2)), \"Mean: {:0.3f} ADU\"\n", - " .format(np.nanmean(data))])\n", + " .format(np.nanmean(corr_data))])\n", "t0.add_row([\"Median: {:0.3f} ADU\".format(np.nanmedian(offset_corr_data2)), \"Median: {:0.3f} ADU\"\n", - " .format(np.nanmedian(data))])\n", - "t0.add_row([\"Standard Deviation: {:0.3f} ADU\".format(np.nanstd(offset_corr_data2)), \n", - " \"Standard Deviation: {:0.3f} ADU\".format(np.nanstd(data))])\n", + " .format(np.nanmedian(corr_data))])\n", + "t0.add_row([\"Standard Deviation: {:0.3f} ADU\".format(np.nanstd(offset_corr_data2)),\n", + " \"Standard Deviation: {:0.3f} ADU\".format(np.nanstd(corr_data))])\n", "print(t0,'\\n')" ] }, @@ -1015,14 +970,9 @@ " parm.lower_deviation = temp_limits\n", " parm.upper_deviation = temp_limits\n", "\n", - " # This should be used in case of running notebook \n", - " # by a different method other than myMDC which already\n", - " # sends CalCat info.\n", - " # TODO: Set db_module to \"\" by default in the first cell\n", - " if not db_module:\n", - " db_module = get_pdu_from_db(karabo_id, karabo_da, const,\n", - " condition, cal_db_interface,\n", - " snapshot_at=creation_time)[0]\n", + " db_module = get_pdu_from_db(karabo_id, karabo_da, const,\n", + " condition, cal_db_interface,\n", + " snapshot_at=creation_time)[0]\n", "\n", " if db_output:\n", " md = send_to_db(db_module, karabo_id, const, condition,\n",