diff --git a/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb b/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb
index 22ee77702d3b9e17891e95e63686c2a7eb083f21..722eb0a113265f456e3044a81ff7ff7dd31c30d3 100644
--- a/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb
+++ b/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb
@@ -87,7 +87,7 @@
     "import matplotlib\n",
     "import numpy as np\n",
     "import tabulate\n",
-    "from cal_tools.enums import BadPixels\n",
+    "import yaml\n",
     "\n",
     "matplotlib.use('agg')\n",
     "import matplotlib.pyplot as plt\n",
@@ -104,7 +104,9 @@
     "    get_gain_setting,\n",
     "    get_num_cells,\n",
     ")\n",
-    "from cal_tools.enums import AgipdGainMode\n",
+    "\n",
+    "from cal_tools.enums import AgipdGainMode, BadPixels\n",
+    "\n",
     "from cal_tools.plotting import (\n",
     "    create_constant_overview,\n",
     "    plot_badpix_3d,\n",
@@ -592,7 +594,6 @@
     "# Retrieve existing constants for comparison\n",
     "old_const = {}\n",
     "old_mdata = {}\n",
-    "detinst = getattr(Detectors, dinstance)\n",
     "\n",
     "print('Retrieve pre-existing constants for comparison.')\n",
     "for qm in res:\n",
@@ -600,7 +601,6 @@
     "    karabo_da = qm_db[\"karabo_da\"]\n",
     "    for const in res[qm]:\n",
     "        dconst = getattr(Constants.AGIPD, const)()\n",
-    "        dconst.data = res[qm][const]\n",
     "\n",
     "        # This should be used in case of running notebook\n",
     "        # by a different method other than myMDC which already\n",
@@ -627,7 +627,9 @@
     "                             file_loc, report, creation_time,\n",
     "                             f'{out_folder}/old/')\n",
     "        else:\n",
-    "            old_mdata[const] = \"Not found\""
+    "            old_mdata[const] = \"Not found\"\n",
+    "    with open(f\"{out_folder}/module_mapping_{qm}.yml\",\"w\") as fd:\n",
+    "        yaml.safe_dump({\"module_mapping\": {qm: qm_db[\"db_module\"]}}, fd)"
    ]
   },
   {
@@ -658,6 +660,7 @@
     "    print(\"Constants parameter conditions are:\\n\")\n",
     "    print(f\"• memory_cells: {max_cells}\\n• bias_voltage: {bias_voltage}\\n\"\n",
     "          f\"• acquisition_rate: {acq_rate}\\n• gain_setting: {gain_setting}\\n\"\n",
+    "          f\"• gain_mode: {fixed_gain_mode}\\n\"\n",
     "          f\"• creation_time: {md.calibration_constant_version.begin_at if md is not None else creation_time}\\n\")"
    ]
   },
@@ -845,6 +848,17 @@
     "The following tables show summary information for the evaluated module. Values for currently evaluated constants are compared with values for pre-existing constants retrieved from the calibration database."
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "display(Markdown('The following pre-existing constants are used for comparison: \\n'))\n",
+    "for key in old_mdata:\n",
+    "    display(Markdown('**{}** at {}'.format(key, old_mdata[key])))"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -988,4 +1002,4 @@
  },
  "nbformat": 4,
  "nbformat_minor": 4
-}
+}
\ No newline at end of file
diff --git a/notebooks/DSSC/Characterize_DSSC_Darks_NBC.ipynb b/notebooks/DSSC/Characterize_DSSC_Darks_NBC.ipynb
index e3381c13eebacc4b44b644edb19bc1e55e47c847..9492f7d9bf16e73fc0b4b9ebef560bca0ad962fa 100644
--- a/notebooks/DSSC/Characterize_DSSC_Darks_NBC.ipynb
+++ b/notebooks/DSSC/Characterize_DSSC_Darks_NBC.ipynb
@@ -16,12 +16,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "ExecuteTime": {
-     "end_time": "2019-02-20T12:42:51.255184Z",
-     "start_time": "2019-02-20T12:42:51.225500Z"
-    }
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "cluster_profile = \"noDB\" # The ipcluster profile to use\n",
@@ -66,12 +61,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "ExecuteTime": {
-     "end_time": "2019-02-20T12:42:52.599660Z",
-     "start_time": "2019-02-20T12:42:51.472138Z"
-    }
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "import os\n",
@@ -94,6 +84,8 @@
     "%matplotlib inline\n",
     "import numpy as np\n",
     "import tabulate\n",
+    "import yaml\n",
+    "\n",
     "from cal_tools.dssclib import get_dssc_ctrl_data, get_pulseid_checksum\n",
     "from cal_tools.enums import BadPixels\n",
     "from cal_tools.plotting import (\n",
@@ -155,12 +147,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "ExecuteTime": {
-     "end_time": "2019-02-20T12:42:52.608214Z",
-     "start_time": "2019-02-20T12:42:52.601257Z"
-    }
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "print(\"Parameters are:\")\n",
@@ -187,12 +174,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "ExecuteTime": {
-     "end_time": "2019-02-20T12:42:54.024731Z",
-     "start_time": "2019-02-20T12:42:53.901555Z"
-    }
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "# set everything up filewise\n",
@@ -214,12 +196,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "ExecuteTime": {
-     "end_time": "2019-02-20T10:50:55.839958Z",
-     "start_time": "2019-02-20T10:50:55.468134Z"
-    }
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "import copy\n",
@@ -452,18 +429,15 @@
     "                             creation_time,\n",
     "                             f'{out_folder}/old/')\n",
     "        else:\n",
-    "            old_mdata[const] = \"Not found\""
+    "            old_mdata[const] = \"Not found\"\n",
+    "    with open(f\"{out_folder}/module_mapping_{qm}.yml\",\"w\") as fd:\n",
+    "        yaml.safe_dump({\"module_mapping\": {qm: qm_db[\"db_module\"]}}, fd)"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "ExecuteTime": {
-     "end_time": "2018-12-06T09:38:18.234582Z",
-     "start_time": "2018-12-06T09:38:18.222838Z"
-    }
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "res = OrderedDict()\n",
@@ -480,12 +454,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "ExecuteTime": {
-     "end_time": "2018-12-06T09:49:32.449330Z",
-     "start_time": "2018-12-06T09:49:20.231607Z"
-    }
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "# Push the same constant two different times.\n",
@@ -558,13 +527,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "ExecuteTime": {
-     "end_time": "2018-12-06T09:49:14.540552Z",
-     "start_time": "2018-12-06T09:49:13.009674Z"
-    },
-    "scrolled": false
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "cell = 9\n",
@@ -576,9 +539,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "scrolled": false
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "cols = {BadPixels.NOISE_OUT_OF_THRESHOLD.value: (BadPixels.NOISE_OUT_OF_THRESHOLD.name, '#FF000080'),\n",
@@ -627,9 +588,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "scrolled": false
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "create_constant_overview(noise_g, \"Noise (ADU)\", max_cells, 0, 100, entries=1)"
@@ -656,6 +615,17 @@
     "The following tables show summary information for the evaluated module. Values for currently evaluated constants are compared with values for pre-existing constants retrieved from the calibration database."
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "display(Markdown('The following pre-existing constants are used for comparison: \\n'))\n",
+    "for key in old_mdata:\n",
+    "    display(Markdown('**{}** at {}'.format(key, old_mdata[key])))"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
diff --git a/notebooks/LPD/LPDChar_Darks_NBC.ipynb b/notebooks/LPD/LPDChar_Darks_NBC.ipynb
index cf833d99f362bfe84f22e780b505deae9b85cedc..d6ff625f12155701a5c84355fdc2530560a828c3 100644
--- a/notebooks/LPD/LPDChar_Darks_NBC.ipynb
+++ b/notebooks/LPD/LPDChar_Darks_NBC.ipynb
@@ -88,6 +88,8 @@
     "%matplotlib inline\n",
     "import numpy as np\n",
     "import tabulate\n",
+    "import yaml\n",
+    "\n",
     "from cal_tools.enums import BadPixels\n",
     "from cal_tools.plotting import (\n",
     "    create_constant_overview,\n",
@@ -422,7 +424,9 @@
     "                                 file_loc, report, creation_time,\n",
     "                                 f'{out_folder}/old/')\n",
     "            else:\n",
-    "                old_mdata[const] = \"Not found\""
+    "                old_mdata[const] = \"Not found\"\n",
+    "    with open(f\"{out_folder}/module_mapping_{qm}.yml\",\"w\") as fd:\n",
+    "        yaml.safe_dump({\"module_mapping\": {qm: qm_db[\"db_module\"]}}, fd)"
    ]
   },
   {
@@ -678,9 +682,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "scrolled": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "cell = 12\n",
diff --git a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb
index d64e6f485787f0be3cd0f28d9e9b119e97a2dc73..e36698c9c7f52317ec26a0863cebe3c5f81b2500 100644
--- a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb
+++ b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb
@@ -9,8 +9,8 @@
     "#Author: K. Ahmed, M. Karnevsky, Version: 0.1\n",
     "#The following is a summary for the processing of dark images and calibration constants production.\n",
     "\n",
-    "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/miniHalfAGIPD\" # path to output to, required\n",
-    "karabo_id = \"HED_DET_AGIPD500K2G\" # detector instance\n",
+    "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/fixed_gain/SPB_summary_fix2\" # path to output to, required\n",
+    "karabo_id = \"SPB_DET_AGIPD1M-1\" # detector instance\n",
     "gain_names = ['High gain', 'Medium gain', 'Low gain'] # a list of gain names to be used in plotting\n",
     "threshold_names = ['HG-MG threshold', 'MG_LG threshold'] # a list of gain names to be used in plotting"
    ]
@@ -26,14 +26,15 @@
     "import warnings\n",
     "from collections import OrderedDict\n",
     "from datetime import datetime\n",
+    "from pathlib import Path\n",
     "\n",
     "warnings.filterwarnings('ignore')\n",
     "\n",
     "import glob\n",
-    "\n",
     "import h5py\n",
     "import matplotlib\n",
     "import numpy as np\n",
+    "import yaml\n",
     "from IPython.display import Latex, Markdown, display\n",
     "\n",
     "matplotlib.use(\"agg\")\n",
@@ -46,6 +47,7 @@
     "import tabulate\n",
     "from cal_tools.ana_tools import get_range\n",
     "from cal_tools.plotting import show_processed_modules\n",
+    "from cal_tools.tools import CalibrationMetadata, module_index_to_qm\n",
     "from iCalibrationDB import Detectors\n",
     "from XFELDetAna.plotting.heatmap import heatmapPlot\n",
     "from XFELDetAna.plotting.simpleplot import simplePlot"
@@ -170,6 +172,24 @@
     "    \"\"\"))"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "out_folder = Path(out_folder)\n",
+    "metadata = CalibrationMetadata(out_folder)\n",
+    "mod_mapping = metadata.setdefault(\"modules-mapping\", {})\n",
+    "for fn in out_folder.glob(\"module_mapping_*.yml\"):\n",
+    "    with fn.open(\"r\") as fd:\n",
+    "        fdict = yaml.safe_load(fd)\n",
+    "    mod_mapping.update(fdict[\"module_mapping\"])\n",
+    "    fn.unlink()\n",
+    "\n",
+    "metadata.save()"
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -188,16 +208,15 @@
     "data = OrderedDict()\n",
     "old_cons = OrderedDict()\n",
     "mod_names = []\n",
+    "\n",
     "# Loop over modules\n",
     "for i in range(nmods):\n",
-    "    qm = f\"Q{i//4+1}M{i%4+1}\"\n",
+    "    qm = module_index_to_qm(i)\n",
+    "    if qm not in metadata[\"modules_mapping\"].keys() and metadata[\"modules_mapping\"][qm]:\n",
+    "        continue\n",
+    "    det_name = metadata[\"modules_mapping\"][qm]\n",
     "    # loop over constants\n",
-    "    detinst = getattr(Detectors, dinstance)\n",
     "    for const in ['Offset', 'Noise', 'ThresholdsDark', 'BadPixelsDark']:\n",
-    "        det = getattr(detinst, qm)\n",
-    "        if det is None:\n",
-    "            continue\n",
-    "        det_name = det.device_name\n",
     "        fpath = '{}/const_{}_{}.h5'.format(out_folder, const, det_name)\n",
     "        oldfpath = '{}/old/const_{}_{}.h5'.format(out_folder, const, det_name)\n",
     "        if not os.path.isfile(fpath):\n",
@@ -332,7 +351,7 @@
     "        else:\n",
     "            glabel = gain_names\n",
     "        for i in range(nmods):\n",
-    "            qm = f\"Q{i//4+1}M{i%4+1}\"\n",
+    "            qm = module_index_to_qm(i)\n",
     "            if qm in mod_names:\n",
     "                m_idx = mod_names.index(qm)\n",
     "                # Check if constant shape of 5 indices e.g. AGIPD, LPD\n",
@@ -564,20 +583,6 @@
     "    md = display(Latex(tabulate.tabulate(\n",
     "        table, tablefmt='latex', headers=header)))"
    ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
   }
  ],
  "metadata": {