diff --git a/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb index 0e3818a737f7d68561313812b7b659bab6c6443c..5568147b70b47d2fcce2b1634f7a754fbd818c4e 100644 --- a/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb @@ -111,21 +111,32 @@ "metadata": {}, "outputs": [], "source": [ + "fixed_gain = False # constant is adaptive by default.\n", "# Get the constant shape from one of the local constants.\n", "# This is one way to realize the number of memory cells.\n", "with h5py.File(list(out_folder.glob(\"const_Offset_*\"))[0], 'r') as f:\n", " const_shape = f[\"data\"][()].shape\n", + " # Get fixed gain value to decide offset vmin, vmax\n", + " # for later constant map plots.\n", + " gain_mode = \"condition/Gain mode/value\"\n", + " if gain_mode in f:\n", + " fixed_gain = f[gain_mode][()]\n", + " \n", "\n", - "initial_stacked_constants = np.zeros(((nmods,)+const_shape))\n", + "initial_stacked_constants = np.full(((nmods,)+const_shape), np.nan)\n", "curr_constants = { c: initial_stacked_constants.copy() for c in dark_constants}\n", "prev_constants = { c: initial_stacked_constants.copy() for c in dark_constants}\n", "\n", + "execulded_constants = [] # constants excluded from comparison plots.\n", + "\n", "# Loop over modules\n", - "for i, mod in enumerate(sorted(expected_modules)):\n", - " # Loop over expected dark constants in out_folder.\n", - " # Some constants can be missing in out_folder.\n", - " pdu = mod_mapping[mod]\n", - " for cname in dark_constants:\n", + "for cname in dark_constants:\n", + " excluded_modules = [] # modules with no previous constants.\n", + " for i, mod in enumerate(sorted(expected_modules)):\n", + " # Loop over expected dark constants in out_folder.\n", + " # Some constants can be missing in out_folder.\n", + " pdu = mod_mapping[mod]\n", + " \n", " # first load new constant\n", " fpath = out_folder / f\"const_{cname}_{pdu}.h5\"\n", " with h5py.File(fpath, 'r') as f:\n", @@ -134,16 +145,23 @@ " # Load previous constants.\n", " old_mod_mdata = prev_const_metadata[mod]\n", "\n", - " if cname not in old_mod_mdata:\n", - " continue\n", - "\n", - " filepath = old_mod_mdata[cname][\"filepath\"]\n", - " h5path = old_mod_mdata[cname][\"h5path\"]\n", - "\n", - " if not filepath or not h5path:\n", - " continue\n", - " with h5py.File(filepath, \"r\") as fd:\n", - " prev_constants[cname][i, ...] = fd[f\"{h5path}/data\"][()]" + " if cname in old_mod_mdata: # a module can be missing from detector dark processing.\n", + " filepath = old_mod_mdata[cname][\"filepath\"]\n", + " h5path = old_mod_mdata[cname][\"h5path\"]\n", + " if not filepath or not h5path:\n", + " excluded_modules.append(mod)\n", + " prev_constants[cname][i, ...].fill(np.nan)\n", + " else:\n", + " with h5py.File(filepath, \"r\") as fd:\n", + " prev_constants[cname][i, ...] = fd[f\"{h5path}/data\"][()]\n", + "\n", + " if excluded_modules:\n", + " print(f\"Previous {cname} constants for {excluded_modules} are not available.\\n.\")\n", + " # Exclude constants from comparison plots, if the corresponding\n", + " # previous constants are not available for all modules.\n", + " if len(excluded_modules) == nmods:\n", + " execulded_constants.append(cname)\n", + " print(f\"No comparison plots for {cname}.\\n\")" ] }, { @@ -178,6 +196,9 @@ " \"Noise\": [(0., 50.), (0., 50.), (0., 50.)],\n", " \"BadPixelsDark\": [(0., 5.), (0., 5.), (0., 5.)],\n", "}\n", + "# vmin and vmax are different for Offset for fixed gain constants. \n", + "if fixed_gain:\n", + " const_range[\"Offset\"] = [(0, 8000), (0, 8000), (0, 8000)]\n", "\n", "diff_const_range = {\n", " \"Offset\": [(0, 500), (0, 500), (0, 500)],\n", @@ -190,27 +211,27 @@ "axis = OrderedDict({\n", " \"ax0\": {\n", " \"gs\": gs[0, 1:3],\n", - " \"shrink\": 0.9,\n", + " \"shrink\": 0.7,\n", " \"pad\": 0.05,\n", " \"label\": \"ADCu\",\n", - " \"title\": '{}',\n", - " 'location': 'right',\n", + " \"title\": \"{}\",\n", + " \"location\": \"right\",\n", " },\n", " \"ax1\": {\n", " \"gs\": gs[1, :2],\n", - " \"shrink\": 0.6,\n", - " \"pad\": 0.05,\n", + " \"shrink\": 0.7,\n", + " \"pad\": 0.02,\n", " \"label\": \"ADCu\",\n", - " 'location': 'left',\n", - " \"title\": 'Difference with previous {}',\n", + " \"location\": \"left\",\n", + " \"title\": \"Difference with previous {}\",\n", " },\n", " \"ax2\": {\n", " \"gs\": gs[1, 2:],\n", - " \"shrink\": 0.6,\n", - " \"pad\": 0.05,\n", + " \"shrink\": 0.7,\n", + " \"pad\": 0.02,\n", " \"label\": \"%\",\n", - " 'location': 'right',\n", - " \"title\": 'Difference with previous {} %'},\n", + " \"location\": \"right\",\n", + " \"title\": \"Difference with previous {} %\"},\n", " })" ] }, @@ -239,7 +260,7 @@ " mean_frac = np.abs(mean_diff / mean_const) * 100\n", " \n", " for gain in range(gainstages):\n", - " plot_data = {\n", + " data_to_plot = {\n", " f'ax0': mean_const[..., gain],\n", " f'ax1': mean_diff[..., gain],\n", " f'ax2': mean_frac[..., gain],\n", @@ -248,9 +269,10 @@ " # Plotting constant overall modules.\n", " display(Markdown(f'### {cname} - {gain_names[gain]}'))\n", " if nmods > 1:\n", - " fig = plt.figure(figsize=(30, 30))\n", + " fig = plt.figure(figsize=(20, 20))\n", " else:\n", - " fig = plt.figure(figsize=(31, 18))\n", + " fig = plt.figure(figsize=(20, 10))\n", + " \n", " for axname, axv in axis.items():\n", " # Add the min and max plot values for each axis.\n", " if axname == \"ax0\":\n", @@ -259,16 +281,21 @@ " vmin, vmax = 0, 100\n", " else:\n", " vmin, vmax = diff_const_range[cname][gain]\n", + " # Avoid difference plots if previous constants\n", + " # are missing for the detector.\n", + " if cname in execulded_constants and axname != \"ax0\":\n", + " break\n", " ax = fig.add_subplot(axv[\"gs\"])\n", "\n", - " geom.plot_data_fast(\n", - " plot_data[axname],\n", + " geom.plot_data(\n", + " data_to_plot[axname],\n", " vmin=vmin, vmax=vmax, ax=ax, \n", " colorbar={\n", " \"shrink\": axv[\"shrink\"],\n", " \"pad\": axv[\"pad\"],\n", - " \"location\": axv[\"location\"]},\n", - " )\n", + " \"location\": axv[\"location\"],\n", + " }\n", + " )\n", "\n", " colorbar = ax.images[0].colorbar\n", " colorbar.set_label(axv[\"label\"], fontsize=15)\n",