diff --git a/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb
index 0e3818a737f7d68561313812b7b659bab6c6443c..5568147b70b47d2fcce2b1634f7a754fbd818c4e 100644
--- a/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb
+++ b/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb
@@ -111,21 +111,32 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "fixed_gain = False  # constant is adaptive by default.\n",
     "# Get the constant shape from one of the local constants.\n",
     "# This is one way to realize the number of memory cells.\n",
     "with h5py.File(list(out_folder.glob(\"const_Offset_*\"))[0], 'r') as f:\n",
     "    const_shape = f[\"data\"][()].shape\n",
+    "    # Get fixed gain value to decide offset vmin, vmax\n",
+    "    # for later constant map plots.\n",
+    "    gain_mode = \"condition/Gain mode/value\"\n",
+    "    if gain_mode in f:\n",
+    "        fixed_gain = f[gain_mode][()]\n",
+    "        \n",
     "\n",
-    "initial_stacked_constants = np.zeros(((nmods,)+const_shape))\n",
+    "initial_stacked_constants = np.full(((nmods,)+const_shape), np.nan)\n",
     "curr_constants = { c: initial_stacked_constants.copy() for c in dark_constants}\n",
     "prev_constants = { c: initial_stacked_constants.copy() for c in dark_constants}\n",
     "\n",
+    "execulded_constants = []  # constants excluded from comparison plots.\n",
+    "\n",
     "# Loop over modules\n",
-    "for i, mod in enumerate(sorted(expected_modules)):\n",
-    "    # Loop over expected dark constants in out_folder.\n",
-    "    # Some constants can be missing in out_folder.\n",
-    "    pdu = mod_mapping[mod]\n",
-    "    for cname in dark_constants:\n",
+    "for cname in dark_constants:\n",
+    "    excluded_modules = []  # modules with no previous constants.\n",
+    "    for i, mod in enumerate(sorted(expected_modules)):\n",
+    "        # Loop over expected dark constants in out_folder.\n",
+    "        # Some constants can be missing in out_folder.\n",
+    "        pdu = mod_mapping[mod]\n",
+    "    \n",
     "        # first load new constant\n",
     "        fpath = out_folder / f\"const_{cname}_{pdu}.h5\"\n",
     "        with h5py.File(fpath, 'r') as f:\n",
@@ -134,16 +145,23 @@
     "        # Load previous constants.\n",
     "        old_mod_mdata = prev_const_metadata[mod]\n",
     "\n",
-    "        if cname not in old_mod_mdata:\n",
-    "            continue\n",
-    "\n",
-    "        filepath = old_mod_mdata[cname][\"filepath\"]\n",
-    "        h5path = old_mod_mdata[cname][\"h5path\"]\n",
-    "\n",
-    "        if not filepath or not h5path:\n",
-    "            continue\n",
-    "        with h5py.File(filepath, \"r\") as fd:\n",
-    "            prev_constants[cname][i, ...] = fd[f\"{h5path}/data\"][()]"
+    "        if cname in old_mod_mdata:  # a module can be missing from detector dark processing.\n",
+    "            filepath = old_mod_mdata[cname][\"filepath\"]\n",
+    "            h5path = old_mod_mdata[cname][\"h5path\"]\n",
+    "            if not filepath or not h5path:\n",
+    "                excluded_modules.append(mod)\n",
+    "                prev_constants[cname][i, ...].fill(np.nan)\n",
+    "            else:\n",
+    "                with h5py.File(filepath, \"r\") as fd:\n",
+    "                    prev_constants[cname][i, ...] = fd[f\"{h5path}/data\"][()]\n",
+    "\n",
+    "    if excluded_modules:\n",
+    "        print(f\"Previous {cname} constants for {excluded_modules} are not available.\\n.\")\n",
+    "    # Exclude constants from comparison plots, if the corresponding\n",
+    "    # previous constants are not available for all modules.\n",
+    "    if len(excluded_modules) == nmods:\n",
+    "        execulded_constants.append(cname)\n",
+    "        print(f\"No comparison plots for {cname}.\\n\")"
    ]
   },
   {
@@ -178,6 +196,9 @@
     "    \"Noise\": [(0., 50.), (0., 50.), (0., 50.)],\n",
     "    \"BadPixelsDark\": [(0., 5.), (0., 5.), (0., 5.)],\n",
     "}\n",
+    "# vmin and vmax are different for Offset for fixed gain constants. \n",
+    "if fixed_gain:\n",
+    "    const_range[\"Offset\"] = [(0, 8000), (0, 8000), (0, 8000)]\n",
     "\n",
     "diff_const_range = {\n",
     "    \"Offset\": [(0, 500), (0, 500), (0, 500)],\n",
@@ -190,27 +211,27 @@
     "axis = OrderedDict({\n",
     "    \"ax0\": {\n",
     "        \"gs\": gs[0, 1:3],\n",
-    "        \"shrink\": 0.9,\n",
+    "        \"shrink\": 0.7,\n",
     "        \"pad\": 0.05,\n",
     "        \"label\": \"ADCu\",\n",
-    "        \"title\": '{}',\n",
-    "        'location': 'right',\n",
+    "        \"title\": \"{}\",\n",
+    "        \"location\": \"right\",\n",
     "        },\n",
     "    \"ax1\": {\n",
     "        \"gs\": gs[1, :2],\n",
-    "        \"shrink\": 0.6,\n",
-    "        \"pad\": 0.05,\n",
+    "        \"shrink\": 0.7,\n",
+    "        \"pad\": 0.02,\n",
     "        \"label\": \"ADCu\",\n",
-    "        'location': 'left',\n",
-    "        \"title\": 'Difference with previous {}',\n",
+    "        \"location\": \"left\",\n",
+    "        \"title\": \"Difference with previous {}\",\n",
     "        },\n",
     "    \"ax2\": {\n",
     "        \"gs\": gs[1, 2:],\n",
-    "        \"shrink\": 0.6,\n",
-    "        \"pad\": 0.05,\n",
+    "        \"shrink\": 0.7,\n",
+    "        \"pad\": 0.02,\n",
     "        \"label\": \"%\",\n",
-    "        'location': 'right',\n",
-    "        \"title\": 'Difference with previous {} %'},\n",
+    "        \"location\": \"right\",\n",
+    "        \"title\": \"Difference with previous {} %\"},\n",
     "    })"
    ]
   },
@@ -239,7 +260,7 @@
     "    mean_frac = np.abs(mean_diff / mean_const) * 100\n",
     "        \n",
     "    for gain in range(gainstages):\n",
-    "        plot_data = {\n",
+    "        data_to_plot = {\n",
     "            f'ax0': mean_const[..., gain],\n",
     "            f'ax1': mean_diff[..., gain],\n",
     "            f'ax2': mean_frac[..., gain],\n",
@@ -248,9 +269,10 @@
     "        # Plotting constant overall modules.\n",
     "        display(Markdown(f'### {cname} - {gain_names[gain]}'))\n",
     "        if nmods > 1:\n",
-    "            fig = plt.figure(figsize=(30, 30))\n",
+    "            fig = plt.figure(figsize=(20, 20))\n",
     "        else:\n",
-    "            fig = plt.figure(figsize=(31, 18))\n",
+    "            fig = plt.figure(figsize=(20, 10))\n",
+    "        \n",
     "        for axname, axv in axis.items():\n",
     "            # Add the min and max plot values for each axis.\n",
     "            if axname == \"ax0\":\n",
@@ -259,16 +281,21 @@
     "                vmin, vmax = 0, 100\n",
     "            else:\n",
     "                vmin, vmax = diff_const_range[cname][gain]\n",
+    "            # Avoid difference plots if previous constants\n",
+    "            # are missing for the detector.\n",
+    "            if cname in execulded_constants and axname != \"ax0\":\n",
+    "                break\n",
     "            ax = fig.add_subplot(axv[\"gs\"])\n",
     "\n",
-    "            geom.plot_data_fast(\n",
-    "                plot_data[axname],\n",
+    "            geom.plot_data(\n",
+    "                data_to_plot[axname],\n",
     "                vmin=vmin, vmax=vmax, ax=ax, \n",
     "                colorbar={\n",
     "                    \"shrink\": axv[\"shrink\"],\n",
     "                    \"pad\": axv[\"pad\"],\n",
-    "                    \"location\": axv[\"location\"]},\n",
-    "                )\n",
+    "                    \"location\": axv[\"location\"],\n",
+    "                }\n",
+    "            )\n",
     "\n",
     "            colorbar = ax.images[0].colorbar\n",
     "            colorbar.set_label(axv[\"label\"], fontsize=15)\n",