diff --git a/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb b/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb
index fda112e5d0e08a1edafe0023adab63a805b8f710..6e667a75668866251978934b081c417a649c930a 100644
--- a/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb
+++ b/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb
@@ -31,8 +31,9 @@
     "\n",
     "# Parameters used to access raw data.\n",
     "karabo_id = \"FXE_XAD_G2XES\"  # karabo prefix of Gotthard-II devices\n",
-    "karabo_da = [\"GH201\"]  # data aggregators\n",
-    "receiver_template = \"RECEIVER\"  # receiver template used to read INSTRUMENT keys.\n",
+    "karabo_da = [\"\"]  # data aggregators\n",
+    "receiver_template = \"RECEIVER{}\"  # receiver template used to read INSTRUMENT keys.\n",
+    "receiver_affixes = [\"\"]  # The affix to format into the receiver template to be able to load the correct receiver name from the data.\n",
     "control_template = \"CONTROL\"  # control template used to read CONTROL keys.\n",
     "ctrl_source_template = '{}/DET/{}'  # template for control source name (filled with karabo_id_control)\n",
     "karabo_id_control = \"\"  # Control karabo ID. Set to empty string to use the karabo-id\n",
@@ -127,8 +128,8 @@
    "source": [
     "run_dc = RunDirectory(in_folder / f\"r{run_high:04d}\")\n",
     "file_loc = f\"proposal:{run_dc.run_metadata()['proposalNumber']} runs:{run_high} {run_med} {run_low}\"  # noqa\n",
-    "\n",
-    "receivers = sorted(list(run_dc.select(f'{karabo_id}/DET/{receiver_template}*').all_sources))"
+    "receiver_names = [f\"*{receiver_template.format(x)}*\" for x in receiver_affixes]\n",
+    "data_sources = list(run_dc.select(receiver_names).all_sources)"
    ]
   },
   {
@@ -233,6 +234,8 @@
    "source": [
     "def specify_trains_to_process(\n",
     "    img_key_data: \"extra_data.KeyData\",\n",
+    "    run_num: int,\n",
+    "    src: str,\n",
     "):\n",
     "    \"\"\"Specify total number of trains to process.\n",
     "    Based on given min_trains and max_trains, if given.\n",
@@ -244,7 +247,7 @@
     "    n_trains = img_key_data.shape[0]\n",
     "    all_trains = len(img_key_data.train_ids)\n",
     "    print(\n",
-    "        f\"{receiver} has {all_trains - n_trains} \"\n",
+    "        f\"{src} for run {run} has {all_trains - n_trains}\"\n",
     "        f\"trains with empty frames out of {all_trains} trains\"\n",
     "    )\n",
     "\n",
@@ -289,7 +292,7 @@
     "def convert_train(wid, index, tid, d):\n",
     "    \"\"\"Convert a Gotthard2 train from 12bit to 10bit.\"\"\"\n",
     "    gotthard2algs.convert_to_10bit(\n",
-    "        d[receiver][\"data.adc\"], lut, data_10bit[index, ...]\n",
+    "        d[src][\"data.adc\"], lut, data_10bit[index, ...]\n",
     "    )"
    ]
   },
@@ -310,7 +313,7 @@
     "    np.uint16\n",
     ")\n",
     "empty_lut = np.stack(1280 * [np.stack([empty_lut] * 2)], axis=0)\n",
-    "for mod, receiver in zip(karabo_da, receivers):\n",
+    "for mod, src in zip(karabo_da, data_sources):\n",
     "\n",
     "    # Retrieve LUT constant\n",
     "    lut, time = get_constant_from_db_and_time(\n",
@@ -334,10 +337,10 @@
     "\n",
     "    for run_num, [gain, run_dc] in run_dcs_dict.items():\n",
     "        step_timer.start()\n",
-    "        n_trains = specify_trains_to_process(run_dc[receiver, \"data.adc\"])\n",
+    "        n_trains = specify_trains_to_process(run_dc[src, \"data.adc\"], run_num, src)\n",
     "\n",
     "        # Select requested number of trains to process.\n",
-    "        dc = run_dc.select(receiver, require_all=True).select_trains(\n",
+    "        dc = run_dc.select(src, require_all=True).select_trains(\n",
     "            np.s_[:n_trains]\n",
     "        )\n",
     "\n",
@@ -346,7 +349,7 @@
     "        step_timer.start()\n",
     "        # Convert 12bit data to 10bit\n",
     "        data_10bit = context.alloc(\n",
-    "            shape=dc[receiver, \"data.adc\"].shape, dtype=np.float32\n",
+    "            shape=dc[src, \"data.adc\"].shape, dtype=np.float32\n",
     "        )\n",
     "        context.map(convert_train, dc)\n",
     "        step_timer.done_step(\"convert to 10bit\")\n",
@@ -374,7 +377,7 @@
     "        context.map(offset_noise_cell, (even_data, odd_data))\n",
     "\n",
     "        # Split even and odd gain data.\n",
-    "        data_gain = dc[receiver, \"data.gain\"].ndarray()\n",
+    "        data_gain = dc[src, \"data.gain\"].ndarray()\n",
     "        even_gain = data_gain[:, 20::2, :]\n",
     "        odd_gain = data_gain[:, 21::2, :]\n",
     "        raw_g = 3 if gain == 2 else gain\n",
diff --git a/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb b/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb
index aff16f80037d928e20ea830865d763ffa636d065..62853ba7de5b05b6a03f249c6e7d8df7e7fa59f1 100644
--- a/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb
+++ b/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb
@@ -60,11 +60,13 @@
     "# Parameters used to access raw data.\n",
     "karabo_id = \"DETLAB_25UM_GH2\"  # karabo prefix of Gotthard-II devices\n",
     "karabo_da = [\"\"]  # data aggregators\n",
-    "receiver_template = \"RECEIVER\"  # receiver template used to read INSTRUMENT keys.\n",
+    "receiver_template = \"RECEIVER{}\"  # receiver template used to read INSTRUMENT keys.\n",
+    "receiver_affixes = [\"\"]  # The affix to format into the receiver template to be able to load the correct receiver name from the data.\n",
     "control_template = \"CONTROL\"  # control template used to read CONTROL keys.\n",
     "ctrl_source_template = \"{}/DET/{}\"  # template for control source name (filled with karabo_id_control)\n",
     "karabo_id_control = \"\"  # Control karabo ID. Set to empty string to use the karabo-id\n",
-    "corr_data_source = \"{}/CORR/{}:daqOutput\"  # Correction data source. filled with karabo_id and correction receiver\n",
+    "corr_source_template = \"{}/CORR/{}:daqOutput\"  # Correction data source template. filled with karabo_id and correction receiver\n",
+    "corr_receiver = \"\"  # The receiver name of the corrected data. Leave empty for using the same receiver name for the 50um GH2 or the first(Master) receiver for the 25um GH2.\n",
     "\n",
     "# Parameters for calibration database.\n",
     "cal_db_interface = \"tcp://max-exfl-cal001:8016#8025\"  # the database interface to use.\n",
@@ -234,11 +236,16 @@
     "print(f\"Process modules: {db_modules} for run {run}\")\n",
     "\n",
     "# Create the correction receiver name.\n",
-    "receivers = sorted(list(run_dc.select(f'{karabo_id}/DET/{receiver_template}*').all_sources))\n",
-    "if gh2_detector == \"25um\":  # For 25um use virtual karabo_das for CALCAT data mapping.\n",
-    "    corr_receiver = receivers[0].split(\"/\")[-1].split(\":\")[0][:-2]\n",
-    "else:\n",
-    "    corr_receiver = receivers[0].split(\"/\")[-1].split(\":\")[0]"
+    "receiver_names = [f\"*{receiver_template.format(x)}*\" for x in receiver_affixes]\n",
+    "data_sources = list(run_dc.select(receiver_names).all_sources)\n",
+    "\n",
+    "if not corr_receiver:\n",
+    "    # This part assumes this data_source structure: '{karabo_id}/DET/{receiver_name}:{output_channel}'\n",
+    "    if gh2_detector == \"25um\":  # For 25um use virtual karabo_das for CALCAT data mapping.\n",
+    "        corr_receiver = data_sources[0].split(\"/\")[-1].split(\":\")[0][:-2]\n",
+    "    else:\n",
+    "        corr_receiver = data_sources[0].split(\"/\")[-1].split(\":\")[0]\n",
+    "    print(f\"Using {corr_receiver} as a receiver name for the corrected data.\")"
    ]
   },
   {
@@ -399,30 +406,30 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "corr_data_source = corr_data_source.format(karabo_id, corr_receiver)\n",
+    "corr_data_source = corr_source_template.format(karabo_id, corr_receiver)\n",
     "\n",
     "for raw_file in seq_files:\n",
     "\n",
     "    out_file = out_folder / raw_file.name.replace(\"RAW\", \"CORR\")\n",
     "    # Select module INSTRUMENT sources and deselect empty trains.\n",
-    "    dc = H5File(raw_file).select(receivers, require_all=True)\n",
+    "    dc = H5File(raw_file).select(data_sources, require_all=True)\n",
     "\n",
     "    n_trains = len(dc.train_ids)\n",
     "\n",
     "    # Initialize GH2 data and gain arrays to store in corrected files.\n",
     "    if gh2_detector == \"25um\":\n",
-    "        data_stored = np.zeros((dc[receivers[0], \"data.adc\"].shape[:2] + (1280 * 2,)), dtype=np.float32)\n",
-    "        gain_stored = np.zeros((dc[receivers[0], \"data.adc\"].shape[:2] + (1280 * 2,)), dtype=np.uint8)\n",
+    "        data_stored = np.zeros((dc[data_sources[0], \"data.adc\"].shape[:2] + (1280 * 2,)), dtype=np.float32)\n",
+    "        gain_stored = np.zeros((dc[data_sources[0], \"data.adc\"].shape[:2] + (1280 * 2,)), dtype=np.uint8)\n",
     "    else:\n",
     "        data_stored = None\n",
     "        gain_stored = None\n",
     "\n",
-    "    for i, (receiver, mod) in enumerate(zip(receivers, karabo_da)):\n",
+    "    for i, (src, mod) in enumerate(zip(data_sources, karabo_da)):\n",
     "        step_timer.start()\n",
-    "        print(f\"Correcting {receiver} for {raw_file}\")\n",
+    "        print(f\"Correcting {src} for {raw_file}\")\n",
     "\n",
-    "        data = dc[receiver, \"data.adc\"].ndarray()\n",
-    "        gain = dc[receiver, \"data.gain\"].ndarray()\n",
+    "        data = dc[src, \"data.adc\"].ndarray()\n",
+    "        gain = dc[src, \"data.gain\"].ndarray()\n",
     "        step_timer.done_step(\"Preparing raw data\")\n",
     "        dshape = data.shape\n",
     "\n",
@@ -441,7 +448,7 @@
     "        data_corr[np.isinf(data_corr)] = np.nan\n",
     "\n",
     "        # Create CORR files and add corrected data sections.\n",
-    "        image_counts = dc[receiver, \"data.adc\"].data_counts(labelled=False)\n",
+    "        image_counts = dc[src, \"data.adc\"].data_counts(labelled=False)\n",
     "\n",
     "        if gh2_detector == \"25um\":\n",
     "            data_stored[..., i::2] = data_corr.copy()\n",
@@ -485,7 +492,7 @@
     "        # stored in the corrected file.\n",
     "        for field in [\"bunchId\", \"memoryCell\", \"frameNumber\", \"timestamp\"]:\n",
     "                outp_source.create_key(\n",
-    "                    f\"data.{field}\", data=dc[receiver, f\"data.{field}\"].ndarray(),\n",
+    "                    f\"data.{field}\", data=dc[src, f\"data.{field}\"].ndarray(),\n",
     "                    chunks=(chunks_data, data_corr.shape[1])\n",
     "            )\n",
     "        outp_source.create_compressed_key(f\"data.mask\", data=mask)\n",
@@ -537,9 +544,9 @@
     "    mod_dcs[corr_data_source][\"train_raw_data\"] = np.zeros((data_corr.shape[1], 1280 * 2), dtype=np.float32)\n",
     "    mod_dcs[corr_data_source][\"train_raw_gain\"] = np.zeros((data_corr.shape[1], 1280 * 2), dtype=np.uint8)\n",
     "\n",
-    "for i, rec_mod in enumerate(receivers):\n",
+    "for i, src in enumerate(data_sources):\n",
     "    with H5File(first_seq_raw) as in_dc:\n",
-    "        train_dict = in_dc.train_from_id(tid)[1][rec_mod]\n",
+    "        train_dict = in_dc.train_from_id(tid)[1][src]\n",
     "        if gh2_detector == \"25um\":\n",
     "            mod_dcs[corr_data_source][\"train_raw_data\"][..., i::2] = train_dict[\"data.adc\"]\n",
     "            mod_dcs[corr_data_source][\"train_raw_gain\"][..., i::2] = train_dict[\"data.gain\"]\n",