diff --git a/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb b/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb index b3a8fc651b6720d0946be226cd0a7d2689297b7b..6ef38779844fcbbb19adaee9122642876b0a99fa 100644 --- a/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb +++ b/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb @@ -14,8 +14,8 @@ "metadata": {}, "outputs": [], "source": [ - " in_folder = \"/gpfs/exfel/exp/SPB/202030/p900138/scratch/karnem/r0203_r0204_v01/\" # the folder to read histograms from, required\n", - "out_folder = \"/gpfs/exfel/exp/SPB/202030/p900138/scratch/karnem/r0203_r0204_v01/\" # the folder to output to, required\n", + "in_folder = \"/gpfs/exfel/exp/SPB/202030/p900138/scratch/karnem/r0203_r0204_v01/\" # the folder to read histograms from, required\n", + "out_folder = \"\" # the folder to output to, required\n", "hist_file_template = \"hists_m{:02d}_sum.h5\" # the template to use to access histograms\n", "modules = [10] # modules to correct, set to -1 for all, range allowed\n", "\n", @@ -376,38 +376,35 @@ "metadata": {}, "outputs": [], "source": [ - "fig = plt.figure(figsize=(10,5))\n", + "fig, (ax1, ax2) = plt.subplots(1, 2)\n", + "fig.set_size_inches(16, 7)\n", "for i, shape in enumerate(shapes):\n", " idx = shape[3]\n", - " plt.errorbar(x[idx], hist[idx], np.sqrt(hist[idx]),\n", - " marker='+', ls=''\n", - " )\n", + " ax1.errorbar(\n", + " x[idx], hist[idx],\n", + " np.sqrt(hist[idx]),\n", + " marker='+', ls='',\n", + " )\n", " yg = gaussian(x[idx], *shape[:3])\n", " l = f'Peak {i}: {shape[1]:0.1f} $ \\pm $ {shape[2]:0.2f} ADU'\n", - " plt.plot(x[idx], yg, label=l)\n", - "plt.grid(True)\n", - "plt.xlabel(\"Signal [ADU]\")\n", - "plt.ylabel(\"Counts\")\n", - "plt.legend(ncol=2)\n", + " ax1.plot(x[idx], yg, label=l)\n", + "ax1.grid(True)\n", + "ax1.set_xlabel(\"Signal [ADU]\")\n", + "ax1.set_ylabel(\"Counts\")\n", + "ax1.legend(ncol=2)\n", "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ "_ = xana.simplePlot(\n", - " d, \n", - " x_label='Signal [ADU]', \n", + " d,\n", + " use_axis=ax2,\n", + " x_label='Signal [ADU]',\n", " y_label='Counts',\n", - " secondpanel=True, y_log=False, \n", - " x_range=(frange[0], frange[1]), \n", - " y_range=(1., np.max(hist)*1.6), \n", - " legend='top-left-frame-ncol2'\n", - ")" + " secondpanel=True, y_log=False,\n", + " x_range=(frange[0], frange[1]),\n", + " y_range=(1., np.max(hist)*1.6),\n", + " legend='top-left-frame-ncol2',\n", + ")\n", + "\n", + "plt.show()" ] }, { @@ -500,33 +497,39 @@ "metadata": {}, "outputs": [], "source": [ - "labels = ['Noise peak [ADU]',\n", - " 'First photon peak [ADU]',\n", - " f\"gain [ADU/keV], $\\gamma$={photon_energy} [keV]\",\n", - " \"$\\chi^2$/nDOF\",\n", - " 'Fraction of bad pixels']\n", - "for i, key in enumerate(['g0mean', 'g1mean', 'gain', 'chi2_ndof', 'mask']):\n", + "labels = [\n", + " \"Noise peak [ADU]\",\n", + " \"First photon peak [ADU]\",\n", + " f\"gain [ADU/keV] $\\gamma$={photon_energy} [keV]\",\n", + " \"$\\chi^2$/nDOF\",\n", + " \"Fraction of bad pixels\",\n", + "]\n", "\n", + "for i, key in enumerate(['g0mean', 'g1mean', 'gain', 'chi2_ndof', 'mask']):\n", " fig = plt.figure(figsize=(20,5))\n", " ax = fig.add_subplot(121)\n", " data = fit_result[key]\n", " if key == 'mask':\n", - " data = data>0\n", + " data = data > 0\n", " vmin, vmax = [0, 1]\n", " else:\n", " vmin, vmax = get_range(data, 5)\n", - " _ = heatmapPlot(np.mean(data, axis=0).T,\n", - " add_panels=False, cmap='viridis', use_axis=ax,\n", - " vmin=vmin, vmax=vmax, lut_label=labels[i] )\n", - " \n", + " _ = heatmapPlot(\n", + " np.mean(data, axis=0).T,\n", + " add_panels=False, cmap='viridis', use_axis=ax,\n", + " vmin=vmin, vmax=vmax, lut_label=labels[i]\n", + " )\n", + "\n", " if key != 'mask':\n", " vmin, vmax = get_range(data, 7)\n", - " ax1 = fig.add_subplot(122)\n", - " _ = xana.histPlot(ax1,data.flatten(), \n", - " bins=45,range=[vmin, vmax],\n", - " log=True,color='red',histtype='stepfilled')\n", - " plt.xlabel(labels[i])\n", - " plt.ylabel(\"Counts\") " + " ax = fig.add_subplot(122)\n", + " _ = xana.histPlot(\n", + " ax, data.flatten(),\n", + " bins=45,range=[vmin, vmax],\n", + " log=True,color='red',histtype='stepfilled'\n", + " )\n", + " ax.set_xlabel(labels[i])\n", + " ax.set_ylabel(\"Counts\")" ] }, { @@ -551,7 +554,7 @@ "ax.set_title(f'{hist_std[hist_std<intensity_lim].shape[0]} histograms below threshold in {intensity_lim} ADU',\n", " fontsize=14, fontweight='bold')\n", "ax.grid()\n", - "plt.yscale('log')" + "ax.set_yscale('log')" ] }, { @@ -561,7 +564,7 @@ "outputs": [], "source": [ "def plot_par_distr(par):\n", - " fig = plt.figure(figsize=(16,5))\n", + " fig = plt.figure(figsize=(16, 5))\n", " sel = fit_result['mask'] == 0\n", " \n", " for i in range(n_peaks_fit) :\n", @@ -582,7 +585,7 @@ " log=True,color='g',\n", " label='good fits only',\n", " )\n", - " plt.xlabel(f\"g{i} {par} [ADU]\")\n", + " ax.set_xlabel(f\"g{i} {par} [ADU]\")\n", " ax.legend()\n", " \n", "plot_par_distr('mean')\n", @@ -603,7 +606,7 @@ " }\n", "fig = plt.figure(figsize=(16,5))\n", "for i, (par, data) in enumerate(dsets.items()):\n", - " ax = fig.add_subplot(1,3,i+1)\n", + " ax = fig.add_subplot(1, 3, i+1)\n", " plt_range=get_range(data, 10)\n", " num_bins = 100\n", " _ = xana.histPlot(ax,data.flatten(), \n", @@ -616,14 +619,14 @@ " log=True,color='g',\n", " label='good fits only',\n", " )\n", - " plt.xlabel(f\"{par}\")\n", + " ax.set_xlabel(f\"{par}\")\n", " ax.legend()\n", " if 'd01' in par :\n", - " plt.axvline(d0_lim[0])\n", - " plt.axvline(d0_lim[1])\n", + " ax.axvline(d0_lim[0])\n", + " ax.axvline(d0_lim[1])\n", " if 'rel' in par :\n", - " plt.axvline(gain_lim[0])\n", - " plt.axvline(gain_lim[1])" + " ax.axvline(gain_lim[0])\n", + " ax.axvline(gain_lim[1])" ] }, { @@ -701,7 +704,8 @@ "metadata": {}, "outputs": [], "source": [ - "fig = plt.figure(figsize=(10, 5))\n", + "fig, ax = plt.subplots()\n", + "fig.set_size_inches(10, 5)\n", "\n", "n_bars = 8\n", "x = np.arange(n_bars)\n", @@ -753,12 +757,13 @@ " 'No Entry',\n", " 'Gain deviation']\n", "\n", - "plt.bar(x, y2, width, label='Only this cut')\n", - "plt.bar(x, y, width, label='Cut flow')\n", - "plt.xticks(x, labels, rotation=90)\n", - "plt.ylim(y[5]-0.5, 100)\n", - "plt.grid(True)\n", - "plt.legend()\n", + "ax.bar(x, y2, width, label='Only this cut')\n", + "ax.bar(x, y, width, label='Cut flow')\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels(labels, rotation=90)\n", + "ax.set_ylim(y[5]-0.5, 100)\n", + "ax.grid(True)\n", + "ax.legend()\n", "plt.show()" ] }