diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb
index cbb323604ffc01f73d5be95e2a3044562f530ef2..9770751f9a3bc86acfe33f00c52f71cf52d7369b 100644
--- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb
+++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb
@@ -91,6 +91,7 @@
     "use_litframe_finder = 'off' # Process only illuminated frames: 'off' - disable, 'device' - use online device data, 'offline' - use offline algorithm, 'auto' - choose online/offline source automatically (default)\n",
     "litframe_device_id = '' # Device ID for a lit frame finder device, empty string to auto detection\n",
     "energy_threshold = -1000 # The low limit for the energy (uJ) exposed by frames subject to processing. If -1000, selection by pulse energy is disabled\n",
+    "use_super_selection = 'cm' # Make a common selection for entire run: 'off' - disable, 'final' - enable for final selection, 'cm' - enable only for common mode correction\n",
     "\n",
     "use_xgm_device = ''  # DoocsXGM device ID to obtain actual photon energy, operating condition else.\n",
     "\n",
@@ -454,35 +455,17 @@
    "source": [
     "if use_litframe_finder != 'off':\n",
     "    from extra_redu import make_litframe_finder, LitFrameFinderError\n",
-    "    from extra_redu.litfrm.utils import litfrm_run_report\n",
-    "\n",
+    "    \n",
     "    if use_litframe_finder not in ['auto', 'offline', 'online']:\n",
     "        raise ValueError(\"Unexpected value in 'use_litframe_finder'.\")\n",
     "\n",
     "    inst = karabo_id_control[:3]\n",
     "    litfrm = make_litframe_finder(inst, dc, litframe_device_id)\n",
     "    try:\n",
-    "        if use_litframe_finder == 'auto':\n",
-    "            r = litfrm.read_or_process()\n",
-    "        elif use_litframe_finder == 'offline':\n",
-    "            r = litfrm.process()\n",
-    "        elif use_litframe_finder == 'online':\n",
-    "            r = litfrm.read()\n",
-    "\n",
-    "        report = litfrm_run_report(r)\n",
-    "        print(\"Lit-frame patterns:\")\n",
-    "        print(\" # trains                      Np  Nd  Nf lit frames\")\n",
-    "        for rec in report:\n",
-    "            frmintf = ', '.join(\n",
-    "                [':'.join([str(n) for n in slc]) for slc in rec['frames']]\n",
-    "            )\n",
-    "            trsintf = ':'.join([str(n) for n in rec['trains']])\n",
-    "            print(\n",
-    "                (\"{pattern_no:2d} {trsintf:25s} {npulse:4d} \"\n",
-    "                 \"{ndataframe:3d} {nframe:3d} [{frmintf}]\"\n",
-    "                ).format(frmintf=frmintf, trsintf=trsintf, **rec)\n",
-    "            )\n",
-    "        cell_sel = LitFrameSelection(r, train_ids, max_pulses, energy_threshold)\n",
+    "        get_data = {'auto': litfrm.read_or_process, 'offline': litfrm.process, 'online': litfrm.read}\n",
+    "        r = get_data[use_litframe_finder]()\n",
+    "        cell_sel = LitFrameSelection(r, train_ids, max_pulses, energy_threshold, use_super_selection)\n",
+    "        cell_sel.print_report()\n",
     "    except LitFrameFinderError as err:\n",
     "        warn(f\"Cannot use AgipdLitFrameFinder due to:\\n{err}\")\n",
     "        cell_sel = CellRange(max_pulses, max_cells=mem_cells)\n",
@@ -732,12 +715,13 @@
     "            # In common mode corrected is enabled.\n",
     "            # Cell selection is only activated after common mode correction.\n",
     "            # Perform cross-file correction parallel over asics\n",
+    "            image_files_idx = [i_proc for i_proc, n_img in enumerate(img_counts) if n_img > 0]\n",
     "            pool.starmap(agipd_corr.cm_correction, itertools.product(\n",
-    "                range(len(file_batch)), range(16)  # 16 ASICs per module\n",
+    "                image_files_idx, range(16)  # 16 ASICs per module\n",
     "            ))\n",
     "            step_timer.done_step(\"Common-mode correction\")\n",
     "\n",
-    "            img_counts = pool.map(agipd_corr.apply_selected_pulses, range(len(file_batch)))\n",
+    "            img_counts = pool.map(agipd_corr.apply_selected_pulses, image_files_idx)\n",
     "            step_timer.done_step(\"Applying selected cells after common mode correction\")\n",
     "            \n",
     "        # Perform image-wise correction\"\n",
diff --git a/setup.py b/setup.py
index e5561837146b2b89f3cf75bcb9d62dcf07840ed4..81573a90432076ddb9254a29c79bf1393b939f2e 100644
--- a/setup.py
+++ b/setup.py
@@ -109,7 +109,7 @@ install_requires = [
         "tabulate==0.8.6",
         "traitlets==4.3.3",
         "xarray==2022.3.0",
-        "EXtra-redu==0.0.5",
+        "EXtra-redu==0.0.6",
 ]
 
 if "readthedocs.org" not in sys.executable:
diff --git a/src/cal_tools/agipdlib.py b/src/cal_tools/agipdlib.py
index 862864080e8b84a169bad003710c11b45b35f491..fe7e1079d9e4d278a6c1156411bead1397a9b0c5 100644
--- a/src/cal_tools/agipdlib.py
+++ b/src/cal_tools/agipdlib.py
@@ -289,19 +289,34 @@ class CellSelection:
     CM_PRESEL = 1
     CM_FINSEL = 2
 
+    def filter_trains(self, train_sel: np.ndarray):
+        """Filters out trains that will not be processed
+
+        :param train_sel: list of a train ids selected for processing
+        :return: array of filtered trains
+        """
+        raise NotImplementedError
+
     def get_cells_on_trains(
-        self, trains_sel: List[int], cm: int = 0
+        self, train_sel: np.ndarray, nfrm: np.ndarray, cm: int = 0
     ) -> np.array:
         """Returns mask of cells selected for processing
 
         :param train_sel: list of a train ids selected for processing
+        :param nfrm: the number of frames expected for every train in
+            the list `train_sel`
         :param cm: flag indicates the final selection or interim selection
             for common-mode correction
+
+        :return: boolean array with flags indicating images for processing
         """
         raise NotImplementedError
 
     def msg(self):
-        """Return log message on initialization"""
+        """Returns log message on initialization
+
+        :return: message
+        """
         raise NotImplementedError
 
     @staticmethod
@@ -479,28 +494,30 @@ class AgipdCorrections:
         valid_train_ids = self.get_valid_image_idx(
             im_dc[agipd_base, "image.trainId"])
 
+        # filter out trains which will not be selected
+        valid_train_ids = self.cell_sel.filter_trains(
+            np.array(valid_train_ids)).tolist()
+
         if not valid_train_ids:
             # If there's not a single valid train, exit early.
             print(f"WARNING: No valid trains for {im_dc.files} to process.")
             data_dict['nImg'][0] = 0
             return 0
 
+        # Exclude non_valid trains from the selected data collection.
+        im_dc = im_dc.select_trains(by_id(valid_train_ids))
+
+        # Just want to be sure that order is correct
+        valid_train_ids = im_dc.train_ids
+        # Get a count of images in each train
+        nimg_in_trains = im_dc[agipd_base, "image.trainId"].data_counts(False)
+        nimg_in_trains = nimg_in_trains.astype(int)
+
         # store valid trains in shared memory
-        # valid_train_ids = train_ids[valid]
         n_valid_trains = len(valid_train_ids)
         data_dict["n_valid_trains"][0] = n_valid_trains
         data_dict["valid_trains"][:n_valid_trains] = valid_train_ids
-
-        # get cell selection for the images in this file
-        cm = (self.cell_sel.CM_NONE if apply_sel_pulses
-              else self.cell_sel.CM_PRESEL)
-
-        img_selected = self.cell_sel.get_cells_on_trains(
-            valid_train_ids, cm=cm)
-        data_dict["cm_presel"][0] = (cm == self.cell_sel.CM_PRESEL)
-
-        # Exclude non_valid trains from the selected data collection.
-        im_dc = im_dc.select_trains(by_id(valid_train_ids))
+        data_dict["nimg_in_trains"][:n_valid_trains] = nimg_in_trains
 
         if "AGIPD500K" in agipd_base:
             agipd_comp = components.AGIPD500K(im_dc)
@@ -510,11 +527,23 @@ class AgipdCorrections:
         kw = {
             "unstack_pulses": False,
         }
+
+        # get selection for the images in this file
+        cm = (self.cell_sel.CM_NONE if apply_sel_pulses
+              else self.cell_sel.CM_PRESEL)
+
+        img_selected = self.cell_sel.get_cells_on_trains(
+            np.array(valid_train_ids), nimg_in_trains, cm=cm)
+
+        frm_ix = np.flatnonzero(img_selected)
+        data_dict["cm_presel"][0] = (cm == self.cell_sel.CM_PRESEL)
+        n_img = len(frm_ix)
+
+        # read raw data
         # [n_modules, n_imgs, 2, x, y]
         raw_data = agipd_comp.get_array("image.data", **kw)[0]
-        frm_ix = np.flatnonzero(img_selected)
-        n_img = frm_ix.size
 
+        # store in shmem only selected images
         data_dict['nImg'][0] = n_img
         data_dict['data'][:n_img] = raw_data[frm_ix, 0]
         data_dict['rawgain'][:n_img] = raw_data[frm_ix, 1]
@@ -524,6 +553,7 @@ class AgipdCorrections:
             "image.pulseId", **kw)[0, frm_ix]
         data_dict['trainId'][:n_img] = agipd_comp.get_array(
             "image.trainId", **kw)[0, frm_ix]
+
         return n_img
 
     def write_file(self, i_proc, file_name, ofile_name):
@@ -968,15 +998,16 @@ class AgipdCorrections:
         data_dict = self.shared_dict[i_proc]
         n_img = data_dict['nImg'][0]
 
-        if not data_dict["cm_presel"][0]:
+        if not data_dict["cm_presel"][0] or n_img == 0:
             return n_img
 
         ntrains = data_dict["n_valid_trains"][0]
         train_ids = data_dict["valid_trains"][:ntrains]
+        nimg_in_trains = data_dict["nimg_in_trains"][:ntrains]
 
         # Initializing can_calibrate array
         can_calibrate = self.cell_sel.get_cells_on_trains(
-            train_ids, cm=self.cell_sel.CM_FINSEL
+            train_ids, nimg_in_trains, cm=self.cell_sel.CM_FINSEL
         )
         if np.all(can_calibrate):
             return n_img
@@ -988,7 +1019,8 @@ class AgipdCorrections:
         # Only select data corresponding to selected pulses
         # and overwrite data in shared-memory leaving
         # the required indices to correct
-        array_names = ["data", "rawgain", "cellId", "pulseId", "trainId", "gain"]
+        array_names = [
+            "data", "rawgain", "cellId", "pulseId", "trainId", "gain"]
 
         # if AGIPD in fixed gain mode or melting snow was not requested
         # `t0_rgain` and `raw_data` will be empty shared_mem arrays
@@ -1482,6 +1514,7 @@ class AgipdCorrections:
             self.shared_dict[i]["cm_presel"] = sharedmem.empty(1, dtype="b")
             self.shared_dict[i]["n_valid_trains"] = sharedmem.empty(1, dtype="i4")  # noqa
             self.shared_dict[i]["valid_trains"] = sharedmem.empty(1024, dtype="u8")  # noqa
+            self.shared_dict[i]["nimg_in_trains"] = sharedmem.empty(1024, dtype="i8")  # noqa
 
         if self.corr_bools.get("round_photons"):
             self.shared_hist_preround = sharedmem.empty(len(self.hist_bins_preround) - 1, dtype="i8")
@@ -1579,11 +1612,14 @@ class CellRange(CellSelection):
         )
 
     def get_cells_on_trains(
-        self, train_sel: List[int], cm: int = 0
+        self, train_sel: np.ndarray, nfrm: np.ndarray, cm: int = 0
     ) -> np.array:
         return np.tile(self._sel_for_cm(self.flag, self.flag_cm, cm),
                        len(train_sel))
 
+    def filter_trains(self, train_sel: np.ndarray):
+        return train_sel
+
 
 class LitFrameSelection(CellSelection):
     """Selection of detector memery cells indicated as lit frames
@@ -1593,88 +1629,75 @@ class LitFrameSelection(CellSelection):
                  litfrmdata: 'AgipdLitFrameFinderOffline',
                  train_ids: List[int],
                  crange: Optional[List[int]] = None,
-                 energy_threshold: float = -1000):
+                 energy_threshold: float = -1000,
+                 use_super_selection: str = 'off'):
         """Initialize lit frame selection
 
         :param litfrmdata: AgipdLitFrameFinder output data
         :param train_ids: the list of selected trains
         :param crange: range parameters of selected cells,
             list up to 3 elements
+        :param energy_threshold: the minimum allowed value for
+            pulse energy
+        :param use_super_selection: the stage when super selection
+            should be applied: `off`, `cm` or `final`
         """
-        # read AgipdLitFrameFinder data
+        from extra_redu import FrameSelection, SelType
         self.dev = litfrmdata.meta.litFrmDev
         self.crange = validate_selected_pulses(crange, self.ncell_max)
         self.energy_threshold = energy_threshold
-
-        nfrm = litfrmdata.output.nFrame
-        litfrm_train_ids = litfrmdata.meta.trainId
-        litfrm = litfrmdata.output.nPulsePerFrame > 0
-        if energy_threshold != -1000:
-            litfrm &= litfrmdata.output.energyPerFrame > energy_threshold
-
-        # apply range selection
-        if crange is None:
-            cellsel = np.ones(self.ncell_max, bool)
+        self.use_super_selection = use_super_selection
+
+        if use_super_selection == 'off':
+            self.cm_sel_type = SelType.ROW
+            self.final_sel_type = SelType.CELL
+        elif use_super_selection == 'cm':
+            self.cm_sel_type = SelType.SUPER_ROW
+            self.final_sel_type = SelType.CELL
+        elif use_super_selection == 'final':
+            self.cm_sel_type = SelType.SUPER_ROW
+            self.final_sel_type = SelType.SUPER_CELL
         else:
-            cellsel = np.zeros(self.ncell_max, bool)
-            cellsel[slice(*crange)] = True
+            raise ValueError("param 'use_super_selection' takes only "
+                             "'off', 'cm' or 'final'")
 
-        # update train selection, removing trains without litframe data
-        if train_ids is None:
-            train_ids = np.unique(litfrm_train_ids)
-            ntrain = len(train_ids)
-        else:
-            ntrain_orig = len(train_ids)
-            train_ids, _, litfrm_train_idx = np.intersect1d(
-                train_ids, litfrm_train_ids, return_indices=True
-            )
-            litfrm = litfrm[litfrm_train_idx]
-            nfrm = nfrm[litfrm_train_idx]
-            ntrain = len(train_ids)
-            if ntrain != ntrain_orig:
-                print(f"Lit frame data missed for {ntrain_orig - ntrain}. "
-                      "Skip them.")
-
-        # initiate instance attributes
-        nimg = np.sum(nfrm)
-        self.train_ids = train_ids
-        self.count = nfrm
-        self.first = np.zeros(ntrain, int)
-        self.flag = np.zeros(nimg, bool)
-        self.flag_cm = np.zeros(nimg, bool)
-        self.min_sel = nfrm.max()
-        self.max_sel = 0
-        # compress frame pattern
-        i0 = 0
-        for i in range(ntrain):
-            n = nfrm[i]
-            iN = i0 + n
-            trnflg = litfrm[i] & cellsel
-            trnflg[n:] = False
-            self.first[i] = i0
-            self.flag[i0:iN] = trnflg[:n]
-            self.flag_cm[i0:iN] = (trnflg.reshape(-1, self.row_size).any(1)
-                                   .repeat(self.row_size)[:n])
-            nlit = trnflg[:n].sum()
-            self.min_sel = min(self.min_sel, nlit)
-            self.max_sel = max(self.max_sel, nlit)
-            i0 = iN
+        self._sel = FrameSelection(
+            litfrmdata, guess_missed=True, crange=slice(*self.crange),
+            energy_threshold=energy_threshold, select_litframes=True
+        )
+
+    def print_report(self, max_lines=25):
+        rep = self._sel.report()
+        nrec = len(rep)
+        s = slice(max_lines - 1) if nrec > max_lines else slice(None)
+        print(" # trains                   "
+              "  Ntrn Nmis   Np  Nd  Nf lit frames")
+        for rec in rep[s]:
+            frmintf = ', '.join([':'.join([str(n) for n in slc])
+                                 for slc in rec['litframe_slice']])
+            t0, tN, st = (rec['train_range'] + (1,))[:3]
+            ntrain = max((int(tN) - int(t0)) // int(st), 1)
+            trsintf = ':'.join([str(n) for n in rec['train_range']])
+            print(("{pattern_no:2d} {trsintf:25s} {ntrain:5d} "
+                   "{nmissed_trains:4d} {npulse_exposed:4d} {ndataframe:3d} "
+                   "{nframe_total:3d} [{frmintf}]"
+                   ).format(frmintf=frmintf, ntrain=ntrain,
+                            trsintf=trsintf, **rec))
+        if nrec > max_lines:
+            print(f"... {nrec - max_lines + 1} more lines skipped")
 
     def msg(self):
-        srng = (f"{self.min_sel}" if self.min_sel == self.max_sel
-                else f"{self.min_sel}~{self.max_sel}")
         return (
             f"Use lit frame selection from {self.dev}, crange={self.crange}\n"
-            f"Frames per train: {srng}"
         )
 
     def get_cells_on_trains(
-        self, train_sel: List[int], cm: int = 0
+        self, train_sel: np.ndarray, nfrm: np.ndarray, cm: int = 0
     ) -> np.array:
-        train_idx = np.flatnonzero(np.in1d(self.train_ids, train_sel))
-        i0 = self.first[train_idx]
-        iN = i0 + self.count[train_idx]
-        idx = np.concatenate(
-            [np.arange(i0[i], iN[i], dtype=int) for i in range(train_idx.size)]
-        )
-        return self._sel_for_cm(self.flag[idx], self.flag_cm[idx], cm)
+
+        cell_flags, cm_flags = self._sel.litframes_on_trains(
+            train_sel, nfrm, [self.final_sel_type, self.cm_sel_type])
+        return self._sel_for_cm(cell_flags, cm_flags, cm)
+
+    def filter_trains(self, train_sel: np.ndarray):
+        return self._sel.filter_trains(train_sel, drop_empty=True)