diff --git a/notebooks/Jungfrau/gainCal_JF_Fit_Spectra_Histos.ipynb b/notebooks/Jungfrau/gainCal_JF_Fit_Spectra_Histos.ipynb deleted file mode 100644 index 3cd8cfd71f4eb1a116290c1190b2c1341323f777..0000000000000000000000000000000000000000 --- a/notebooks/Jungfrau/gainCal_JF_Fit_Spectra_Histos.ipynb +++ /dev/null @@ -1,314 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# G0 map from single photon spectra\n", - "\n", - "Author: European XFEL Detector Group, Version: 1.0\n", - "\n", - "Converts single photon flat fields into a G0 map" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "in_folder = \"/gpfs/exfel/exp/HED/202231/p900297/raw\"\n", - "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/FFDATA/HED/p900297/gain_fit\"\n", - "runs = [26] # can be a list of runs\n", - "dir_date_iso = \"\" ## string to save the date of the creation of the run\n", - "\n", - "# to be used when injecting constants (third separate nb)\n", - "sensor_size = [512, 1024] # size of the array in the 'row' and 'col' dimensions\n", - "chunk_size = 10 # n of trains per chunk\n", - "block_size = [128, 64] # dimension of the chunks in 'row' and 'col'\n", - "mod_n = 1 # module number\n", - "karabo_id = \"HED_IA1_JF500K1\" # karabo prefix of Jungfrau devices\n", - "da_name = f\"JNGFR{mod_n:02d}\"\n", - "da_control = \"JNGFRCTRL00\"\n", - "ctrl_source_template = \"{}/DET/CONTROL\" # template for control source name (filled with karabo_id_control)\n", - "karabo_id_control = \"\" # if control is on a different ID, set to empty string if it is the same a karabo-id\n", - "\n", - "bias_voltage = 180.0 # bias voltage - should be derived from CONTROL file\n", - "integration_time = 10.0 # integration time - should be derived from CONTROL file.\n", - "memory_cells = 1 # number of memory cells - should be derived from CONTROL file\n", - "sc_start = 15 # storage cell start value - should be derived from CONTROL file\n", - "gain_mode = 0 # number of memory cells - Set to -1 to derive from CONTROL file.\n", - "\n", - "_fit_func = \"CHARGE_SHARING\" ## which function will be used to fit the histogram\n", - "_h_range = (200.0, 350.0) # range of the histogram in x-axis units\n", - "rebin = 1\n", - "# parameters for the peak finder\n", - "n_sigma = 20.0 # n of sigma abov pedestal threshold\n", - "ratio = 0.99 # ratio of the next peak amplitude in the peak_finder" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import multiprocessing\n", - "import time\n", - "from functools import partial\n", - "from logging import warning\n", - "from pathlib import Path\n", - "\n", - "import numpy as np\n", - "from extra_data import RunDirectory\n", - "from h5py import File as h5file\n", - "\n", - "from cal_tools.jungfrau import jungfrau_ff\n", - "from cal_tools.jungfraulib import JungfrauCtrl" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "out_folder = Path(out_folder)\n", - "out_folder.mkdir(parents=True, exist_ok=True)\n", - "in_folder = Path(in_folder)\n", - "\n", - "if karabo_id_control == \"\":\n", - " karabo_id_control = karabo_id" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Opening log file" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "h_spectra = None\n", - "edges = None\n", - "noise_map = None\n", - "\n", - "ctrl_src = ctrl_source_template.format(karabo_id_control)\n", - "run_dc = RunDirectory(in_folder / f\"r{runs[0]:04d}\")\n", - "\n", - "ctrl_data = JungfrauCtrl(run_dc, ctrl_src)\n", - "\n", - "if memory_cells < 0:\n", - " memory_cells, sc_start = ctrl_data.get_memory_cells()\n", - "\n", - " mem_cells_name = \"single cell\" if memory_cells == 1 else \"burst\"\n", - " print(f\"Run is in {mem_cells_name} mode.\\nStorage cell start: {sc_start:02d}\")\n", - "else:\n", - " mem_cells_name = \"single cell\" if memory_cells == 1 else \"burst\"\n", - " print(\n", - " f\"Run is in manually set to {mem_cells_name} mode. With {memory_cells} memory cells\"\n", - " )\n", - "\n", - "mode = \"Single\"\n", - "if memory_cells > 1:\n", - " mode = \"Burst\"\n", - "\n", - "file_h_name = (\n", - " f\"R{runs[0]:04d}_Gain_{mode}_Spectra_{da_name}_Histo.h5\" # histogram file name\n", - ")\n", - "\n", - "begin_stuff = time.localtime()\n", - "i_cut = file_h_name.find(\"_Histo\")\n", - "fout_temp = file_h_name[:i_cut]\n", - "fout_temp += f\"_{_fit_func}_Fit\"\n", - "\n", - "print(f\"block_size: {block_size}\")\n", - "\n", - "if integration_time < 0:\n", - " integration_time = ctrl_data.get_integration_time()\n", - "if bias_voltage < 0:\n", - " bias_voltage = ctrl_data.get_bias_voltage()\n", - "# if gain_setting < 0:\n", - "# gain_setting = ctrl_data.get_gain_setting()\n", - "if gain_mode < 0:\n", - " gain_mode = ctrl_data.get_gain_mode()\n", - "\n", - "print(f\"Integration time is {integration_time} us\")\n", - "# print(f\"Gain setting is {gain_setting} (run settings: {ctrl_data.run_settings})\")\n", - "print(f\"Gain mode is {gain_mode} ({ctrl_data.run_mode})\")\n", - "print(f\"Bias voltage is {bias_voltage} V\")\n", - "print(f\"Number of memory cells are {memory_cells}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Opening Histo File" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# transposition here is just to make saved histo compatible with my other notebooks\n", - "with h5file(out_folder / file_h_name, \"r\") as f:\n", - " print(f\"opening histo in file {file_h_name}\")\n", - " if \"histos\" in f.keys():\n", - " h_spectra = np.transpose(np.array(f[\"histos\"]))\n", - " print(f\"histogram found: {h_spectra.shape}\")\n", - " else:\n", - " raise AttributeError(\"No histo in file!\")\n", - "\n", - " edges = np.array(f[\"edges\"])\n", - "\n", - " x = (edges[1:] + edges[:-1]) / 2.0\n", - " if \"noise_map\" in f.keys():\n", - " noise_map = np.array(f[\"noise_map\"])\n", - " print(f\"noise map found: {noise_map.shape}\")\n", - " else:\n", - " warning(\"noise map not found!\")\n", - "\n", - " print(\"Reading control data from histogram files.\")\n", - " if \"integration_time\" in f.attrs.keys():\n", - " integration_time = np.float32(f.attrs[\"integration_time\"])\n", - " else:\n", - " print(f\"integration_time is not found! using default value{integration_time}\")\n", - " if \"bias_voltage\" in f.attrs.keys():\n", - " bias_voltage = np.float32(f.attrs[\"bias_voltage\"])\n", - " else:\n", - " warning(f\"bias_voltage not found! using default value: {bias_voltage}\")\n", - "\n", - " if \"creation_time\" in f.attrs.keys():\n", - " dir_date_iso = str(f.attrs[\"creation_time\"])\n", - " if len(dir_date_iso) == 0:\n", - " warning(\"Dir date is empty string\")\n", - " else:\n", - " print(\"dir_date not found!\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fitting histograms" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "chunks = jungfrau_ff.chunk_Multi([h_spectra], block_size)\n", - "pool = multiprocessing.Pool()\n", - "\n", - "st = time.perf_counter()\n", - "\n", - "partial_fit = partial(\n", - " jungfrau_ff.fit_histogram,\n", - " x,\n", - " _fit_func,\n", - " n_sigma,\n", - " rebin,\n", - " ratio,\n", - " noise_map,\n", - ")\n", - "\n", - "print(\"starting spectra fit\")\n", - "r_maps = pool.map(partial_fit, chunks)\n", - "print(\"r_maps calculation\", time.perf_counter() - st)\n", - "\n", - "g0_map = np.zeros((memory_cells, sensor_size[0], sensor_size[1]), dtype=np.float32)\n", - "sigma_map = np.zeros((memory_cells, sensor_size[0], sensor_size[1]), dtype=np.float32)\n", - "chi2ndf_map = np.zeros((memory_cells, sensor_size[0], sensor_size[1]), dtype=np.float32)\n", - "alpha_map = np.zeros((memory_cells, sensor_size[0], sensor_size[1]), dtype=np.float32)\n", - "\n", - "for i, r in enumerate(r_maps):\n", - " g0_chk, sigma_chk, chi2ndf_chk, alpha_chk = r\n", - "\n", - " n_blocks_col = int(g0_map.shape[-1] / block_size[1])\n", - " irow = int(np.floor(i / n_blocks_col)) * block_size[0]\n", - " icol = i % n_blocks_col * block_size[1]\n", - "\n", - " g0_map[..., irow : irow + block_size[0], icol : icol + block_size[1]] = g0_chk\n", - " sigma_map[..., irow : irow + block_size[0], icol : icol + block_size[1]] = sigma_chk\n", - " chi2ndf_map[\n", - " ..., irow : irow + block_size[0], icol : icol + block_size[1]\n", - " ] = chi2ndf_chk\n", - " alpha_map[..., irow : irow + block_size[0], icol : icol + block_size[1]] = alpha_chk\n", - "\n", - "print(\"loading r_maps calculation results\", time.perf_counter() - st)\n", - "\n", - "pool.close()\n", - "\n", - "print(\"... done\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Final steps\n", - "### Saving fit results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fout_path = f\"{out_folder}/{fout_temp}.h5\"\n", - "\n", - "with h5file(fout_path, \"w\") as fout:\n", - " print(\"saving noise map ...\")\n", - "\n", - " ##trasposition is to make it compatible with my other nb\n", - " dset_noi = fout.create_dataset(\"noise_map\", data=np.transpose(noise_map))\n", - " print(\"saving fit results ...\")\n", - "\n", - " dset_chi2 = fout.create_dataset(\"chi2map\", data=np.transpose(chi2ndf_map))\n", - " dset_gmap_fit = fout.create_dataset(\"gainMap_fit\", data=np.transpose(g0_map))\n", - " dset_std = fout.create_dataset(\"sigmamap\", data=np.transpose(sigma_map))\n", - " dset_alpha = fout.create_dataset(\"alphamap\", data=np.transpose(alpha_map))\n", - " fout.attrs[\"memory_cells\"] = memory_cells # TODO: Why memory cells are not saved here. What about the other conditions??\n", - " fout.attrs[\"integration_time\"] = integration_time\n", - " fout.attrs[\"bias_voltage\"] = bias_voltage\n", - " fout.attrs[\"dir_date_iso\"] = dir_date_iso\n", - " fout.attrs[\"karabo_id\"] = karabo_id\n", - " fout.attrs[\"da_name\"] = da_name\n", - "\n", - "print(\"closing\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": ".cal2_venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.11" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/src/xfel_calibrate/notebooks.py b/src/xfel_calibrate/notebooks.py index d6866946998e7c521c2ae1dbcc74dda530ba4417..3e2c56237d5afefaa403ddf0d16d2445ff48f423 100644 --- a/src/xfel_calibrate/notebooks.py +++ b/src/xfel_calibrate/notebooks.py @@ -206,30 +206,15 @@ notebooks = { "FF_HISTS": { "notebook": "notebooks/Jungfrau/gainCal_JF_Create_Spectra_Histos.ipynb", - "dep_notebooks": [ - "notebooks/Jungfrau/gainCal_JF_Fit_Spectra_Histos.ipynb"], - "concurrency": {"parameter": None, - "default concurrency": None, + "concurrency": {"parameter": "karabo_da", + "default concurrency": list(range(8)), "cluster cores": 4}, }, "FF": { "notebook": "notebooks/Jungfrau/create_gain_map.ipynb", - "dep_notebooks": [ - "notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb"], - "concurrency": {"parameter": None, - "default concurrency": None, - "cluster cores": 4}, - }, - "FF_ALL": { - "notebook": - "notebooks/Jungfrau/gainCal_JF_Create_Spectra_Histos.ipynb", - "dep_notebooks": [ - "notebooks/Jungfrau/gainCal_JF_Fit_Spectra_Histos.ipynb", - "notebooks/Jungfrau/create_gain_map.ipynb", - "notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb",], - "concurrency": {"parameter": None, - "default concurrency": None, + "concurrency": {"parameter": "karabo_da", + "default concurrency": list(range(8)), "cluster cores": 4}, }, },