diff --git a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb index 05bda3f95cba5ca42228762483d597f03863ae37..144ce000930afe71d5a8c0cb1f6721d71ddacb50 100644 --- a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb @@ -43,8 +43,8 @@ "badpixel_threshold_sigma = 5. # bad pixels defined by values outside n times this std from median\n", "offset_abs_threshold_low = [1000, 10000, 10000] # absolute bad pixel threshold in terms of offset, lower values\n", "offset_abs_threshold_high = [8000, 15000, 15000] # absolute bad pixel threshold in terms of offset, upper values\n", - "max_trains = 0 # Maximum trains to process darks. Set to 0 to process all available train images.\n", - "min_trains = 1 # Minimum number of trains that should be available to process dark constants. Default 1.\n", + "max_trains = 1000 # Maximum trains to process darks. Set to 0 to process all available train images. 1000 trains is enough resolution to create the dark constants\n", + "min_trains = 100 # Minimum number of trains to process dark constants. Raise a warning if the run has fewer trains.\n", "manual_slow_data = False # if true, use manually entered bias_voltage and integration_time values\n", "time_limits = 0.025 # to find calibration constants later on, the integration time is allowed to vary by 0.5 us\n", "\n", @@ -71,10 +71,9 @@ }, "outputs": [], "source": [ - "import glob\n", "import os\n", "import warnings\n", - "from pathlib import Path\n", + "from logging import warning\n", "warnings.filterwarnings('ignore')\n", "\n", "import matplotlib\n", @@ -92,7 +91,6 @@ "from XFELDetAna.plotting.heatmap import heatmapPlot\n", "from XFELDetAna.plotting.histogram import histPlot\n", "from cal_tools import jungfraulib, step_timing\n", - "from cal_tools.ana_tools import save_dict_to_hdf5\n", "from cal_tools.enums import BadPixels, JungfrauGainMode\n", "from cal_tools.tools import (\n", " get_dir_creation_date,\n", @@ -199,11 +197,11 @@ "\n", "# A transperent workaround for old raw data with wrong/missing medium and low settings\n", "if med_low_settings == [None, None]:\n", - " print(\"WARNING: run.settings is not stored in the data to read. \"\n", - " f\"Hence assuming gain_mode = {gain_mode} for adaptive old data.\")\n", + " warning(\"run.settings is not stored in the data to read. \"\n", + " f\"Hence assuming gain_mode = {gain_mode} for adaptive old data.\")\n", "elif med_low_settings == [\"dynamicgain\", \"forceswitchg1\"]:\n", - " print(f\"WARNING: run.settings for medium and low gain runs are wrong {med_low_settings}. \"\n", - " f\"This is an expected bug for old raw data. Setting gain_mode to {gain_mode}.\")\n", + " warning(f\"run.settings for medium and low gain runs are wrong {med_low_settings}. \"\n", + " f\"This is an expected bug for old raw data. Setting gain_mode to {gain_mode}.\")\n", "# Validate that low_med_settings is not a mix of adaptive and fixed settings.\n", "elif not (sorted(med_low_settings) in [fixed_settings, dynamic_settings, old_fixed_settings]): # noqa\n", " raise ValueError(\n", @@ -310,7 +308,7 @@ "metadata": {}, "outputs": [], "source": [ - "context = psh.context.ThreadContext(num_workers=multiprocessing.cpu_count())" + "context = psh.context.ThreadContext(num_workers=memory_cells)" ] }, { @@ -343,7 +341,8 @@ "\n", " print(f\"\\n- Instrument data path for {mod} is {instrument_src}.\")\n", "\n", - " offset_map[mod] = context.alloc(shape=(sensor_size+(memory_cells, 3)), fill=0)\n", + " offset_map[mod] = context.alloc(\n", + " shape=(sensor_size+(memory_cells, 3)), fill=0, dtype=np.float32)\n", " noise_map[mod] = context.alloc(like=offset_map[mod], fill=0)\n", " bad_pixels_map[mod] = context.alloc(like=offset_map[mod], dtype=np.uint32, fill=0)\n", "\n", @@ -351,46 +350,53 @@ "\n", " def process_cell(worker_id, array_index, cell_number):\n", " cell_slice_idx = acelltable == cell_number\n", - " thiscell = images[..., cell_slice_idx]\n", + " thiscell = images[..., cell_slice_idx] # [1024, 512, n_trains]\n", "\n", " # Identify cells/trains with images of 0 pixels.\n", " # TODO: An investigation is ongoing by DET to identify reason for these empty images.\n", - " nonzero_adc = np.any(thiscell != 0 , axis=(0, 1))\n", + " nonzero_adc = np.any(thiscell != 0 , axis=(0, 1)) # [n_trains]\n", "\n", " # Exclude empty images with 0 pixels, before calculating offset and noise\n", " thiscell = thiscell[..., nonzero_adc]\n", - " offset_map[mod][..., cell_number, gain] = np.mean(thiscell, axis=2)\n", - " noise_map[mod][..., cell_number, gain] = np.std(thiscell, axis=2)\n", - "\n", + " offset_map[mod][..., cell_number, gain] = np.mean( # [1024, 512]\n", + " thiscell, axis=2, dtype=np.float32)\n", + " noise_map[mod][..., cell_number, gain] = np.std( # [1024, 512]\n", + " thiscell, axis=2, dtype=np.float32)\n", + " del thiscell\n", " # Check if there are wrong bad gain values.\n", " # 1. Exclude empty images.\n", " # 2. Indicate pixels with wrong gain value for any train for each cell.\n", " # TODO: mean is used to use thresholds for accepting gain values, even if not 0 mean value.\n", - " gain_avg = np.mean(\n", - " gain_vals[..., cell_slice_idx][..., nonzero_adc], axis=2)\n", + " gain_avg = np.mean( # [1024, 512]\n", + " gain_vals[..., cell_slice_idx][..., nonzero_adc],\n", + " axis=2, dtype=np.float32\n", + " )\n", "\n", + " # [1024, 512]\n", " bad_pixels_map[mod][..., cell_number, gain][gain_avg != raw_g] |= BadPixels.WRONG_GAIN_VALUE.value\n", + "\n", " print(f\"Gain stage {gain}, run {run_n}\")\n", "\n", " # load shape of data for memory cells, and detector size (imgs, cells, x, y)\n", - " n_imgs = run_dc[instrument_src, \"data.adc\"].shape[0]\n", + " n_trains = run_dc[instrument_src, \"data.adc\"].shape[0]\n", " # load number of data available, including trains with empty data.\n", - " n_trains = len(run_dc.train_ids)\n", + " all_trains = len(run_dc.train_ids)\n", " instr_dc = run_dc.select(instrument_src, require_all=True)\n", - " empty_trains = n_trains - n_imgs\n", + " empty_trains = all_trains - n_trains\n", " if empty_trains != 0:\n", - " print(f\"\\tWARNING: {mod} has {empty_trains} trains with empty data out of {n_trains} trains\") # noqa\n", + " print(f\"{mod} has {empty_trains} empty trains out of {all_trains} trains\")\n", " if max_trains > 0:\n", - " n_imgs = min(n_imgs, max_trains)\n", - " print(f\"Processing {n_imgs} images.\")\n", - " # Select only requested number of images to process darks.\n", - " instr_dc = instr_dc.select_trains(np.s_[:n_imgs])\n", + " n_trains = min(n_trains, max_trains)\n", + " print(f\"Processing {n_trains} images.\")\n", + " \n", + " if n_trains == 0:\n", + " raise ValueError(f\"{run_n} has no trains to process.\")\n", "\n", - " if n_imgs < min_trains:\n", - " raise ValueError(\n", - " f\"Less than {min_trains} trains are available in RAW data.\"\n", - " \" Not enough data to process darks.\")\n", + " if n_trains < min_trains:\n", + " warning(f\"Less than {min_trains} trains are available in RAW data.\")\n", "\n", + " # Select only requested number of images to process darks.\n", + " instr_dc = instr_dc.select_trains(np.s_[:n_trains])\n", " images = np.transpose(\n", " instr_dc[instrument_src, \"data.adc\"].ndarray(), (3, 2, 1, 0))\n", " acelltable = np.transpose(instr_dc[instrument_src, \"data.memoryCell\"].ndarray())\n", @@ -413,7 +419,9 @@ "\n", " # Calculate offset and noise maps\n", " context.map(process_cell, range(memory_cells))\n", - "\n", + " del images\n", + " del acelltable\n", + " del gain_vals\n", " step_timer.done_step(f'Creating Offset and noise constants for a module.')" ] },