diff --git a/notebooks/ePix100/Correction_ePix100_NBC.ipynb b/notebooks/ePix100/Correction_ePix100_NBC.ipynb index 94cf8bcb1355d666287ea3bbcdbad2d3c8db63a3..03b9bbded634fbf2c8ff1f18914ac062c8cf07af 100644 --- a/notebooks/ePix100/Correction_ePix100_NBC.ipynb +++ b/notebooks/ePix100/Correction_ePix100_NBC.ipynb @@ -71,6 +71,7 @@ "split_evt_secondary_threshold = 5. # secondary threshold for split event correction\n", "split_evt_mip_threshold = 1000. # minimum ionizing particle threshold\n", "\n", + "\n", "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):\n", " from xfel_calibrate.calibrate import balance_sequences as bs\n", " return bs(in_folder, run, sequences, sequences_per_node, karabo_da)" @@ -573,12 +574,8 @@ "\n", " d_clu, patterns = patternClassifier.classify(d)\n", " d_clu[d_clu < (split_evt_primary_threshold*const_data[\"Noise\"])] = 0\n", - "\n", - " d_sing = np.zeros(d_clu.shape)\n", - " d_sing[patterns==100] = d_clu[patterns==100] # pattern 100 corresponds to single photons events\n", " \n", " data_clu[index, ...] = np.squeeze(d_clu)\n", - " data_sing[index, ...] = np.squeeze(d_sing)\n", " data_patterns[index, ...] = np.squeeze(patterns)\n", "\n", " histCalCSCor.fill(d_clu)\n", @@ -595,17 +592,17 @@ " if pattern_classification:\n", " # Modify pattern classification.\n", " d_clu = d_clu * gain_cnst\n", - " d_sing = d_sing * gain_cnst\n", " \n", " if photon_energy > 0:\n", " d_clu /= photon_energy\n", - " d_sing /= photon_energy\n", "\n", " data_clu[index, ...] = np.squeeze(d_clu)\n", - " data_sing[index, ...] = np.squeeze(d_sing)\n", - " \n", + "\n", " histCalGainCorClusters.fill(d_clu)\n", - " histCalGainCorSingles.fill(d_sing)\n", + " \n", + " d_sing = d_clu[patterns==100] # pattern 100 corresponds to single photons events\n", + " if len(d_sing):\n", + " histCalGainCorSingles.fill(d_sing)\n", "\n", " data[index, ...] = np.squeeze(d)\n", " histCalCor.fill(d)" @@ -652,7 +649,6 @@ "\n", " if pattern_classification:\n", " data_clu = context.alloc(shape=dshape, dtype=np.float32)\n", - " data_sing = context.alloc(shape=dshape, dtype=np.float32)\n", " data_patterns = context.alloc(shape=dshape, dtype=np.int32)\n", "\n", " step_timer.start()\n",