diff --git a/cal_tools/cal_tools/ana_tools.py b/cal_tools/cal_tools/ana_tools.py
index 0b36016b8d18f7a069a9c3bd9995ce2e8fbfd256..a01475006b62d88d932cd12f5a81aebee10feb6c 100644
--- a/cal_tools/cal_tools/ana_tools.py
+++ b/cal_tools/cal_tools/ana_tools.py
@@ -359,16 +359,18 @@ class IMType(Enum):
     ALL_BAD = -4e+4
     NO_BPMAP = -5e+4
 
-def get_range(data, scale):
+
+def get_range(data, scale, threshold = -1000):
     """
     Return a range calculated by median absolute deviations
 
     :param data: numpy.array of data points
     :param scale: range in units of median absolute deviations
-    :return:
+    :param threshold: lower threshold for data to be considered
+    :return: Range [min, max] calculated by median absolute deviations
     """
-    med = np.nanmedian(data)
-    mad = np.nanmedian(np.abs(data.flatten() - med))
+    med = np.nanmedian(data[data>threshold])
+    mad = np.nanmedian(np.abs(data[data>threshold].flatten() - med))
     return med - scale * mad, med + scale * mad
 
 
diff --git a/notebooks/generic/PlotFromCalDB_NBC.ipynb b/notebooks/generic/PlotFromCalDB_NBC.ipynb
index 88472fbbedf8d9b4c8468f4662e578c18144ff17..3e3ba7791731c5ce5b08804aa6d6737192c9d123 100644
--- a/notebooks/generic/PlotFromCalDB_NBC.ipynb
+++ b/notebooks/generic/PlotFromCalDB_NBC.ipynb
@@ -6,9 +6,9 @@
    "source": [
     "# Statistical analysis of calibration factors#\n",
     "\n",
-    "Author: Mikhail Karnevskiy, Steffen Hauf, Version 0.1\n",
+    "Author: Mikhail Karnevskiy, Version 0.2\n",
     "\n",
-    "Calibration constants for pnCCDdetector from the data base with injection time between start_date and end_date are considered.\n",
+    "Plot calibration constants retrieved from the cal. DB.\n",
     "\n",
     "To be visualized, calibration constants are averaged per group of pixels. Plots shows calibration constant over time for each constant.\n",
     "\n",
@@ -24,32 +24,36 @@
     "cluster_profile = \"noDB\" # The ipcluster profile to use\n",
     "start_date = \"2019-06-30\" # date to start investigation interval from\n",
     "end_date = \"NOW\" # date to end investigation interval at, can be \"now\"\n",
-    "dclass=\"jungfrau\" # Detector class\n",
-    "modules = [\"Jungfrau_M039\"] # detector entry in the DB to investigate\n",
-    "constants = [\"Noise\", \"Offset\"] # constants to plot\n",
-    "nconstants = 20 # Number of time stamps to plot. If not 0, overcome start_date.\n",
+    "dclass=\"LPD\" # Detector class\n",
+    "modules = [\"LPD1M1\"] # detector entry in the DB to investigate\n",
+    "submodules = [2] # module index of a modular detector (1 for Q1M1 of AGIPD), range allowed \n",
+    "constants = ['Noise'] # constants to plot\n",
+    "nconstants = 7 # Number of time stamps to plot. If not 0, overcome start_date.\n",
     "max_time = 15 # max time margin in minutes to match bad pixels\n",
+    "nMemToShow = 32 # Number of memory cells to be shown in plots\n",
     "\n",
     "gain_setting = [0] # gain stages\n",
-    "bias_voltage = [90, 180] # Bias voltage\n",
+    "bias_voltage = [250, 500] # Bias voltage\n",
     "temperature = [291] # Operation temperature\n",
     "integration_time = [250, 50] # Integration time\n",
     "pixels_x=[1024] # number of pixels along X axis\n",
     "pixels_y=[512, 1024] # number of pixels along Y axis\n",
     "in_vacuum = [0] # 0 if detector is operated in room pressure\n",
-    "memory_cells = [1] # number of memory cells\n",
-    "parameter_names = ['bias_voltage', 'integration_time', 'temperature', \n",
-    "                   'gain_setting', 'memory_cells', 'pixels_x', 'pixels_y'] # names of parameters\n",
+    "memory_cells = [1, 512] # number of memory cells\n",
+    "acquisition_rate = [1.1] # aquisition rate\n",
+    "parameter_names = ['bias_voltage', 'memory_cells'] # names of parameters\n",
     "\n",
-    "separate_plot = ['integration_time'] # Plot on separate plots\n",
+    "separate_plot = ['gain_setting'] # Plot on separate plots\n",
     "x_labels = ['Sensor Temperature', 'Integration Time'] # parameters to be shown on X axis: Acquisition rate, Memory cells, Sensor Temperature, Integration Time\n",
     "photon_energy = 9.2 # Photon energy of the beam\n",
-    "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_bla2/\" # output folder\n",
+    "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_bla3/\" # output folder\n",
     "use_existing = \"\" # If not empty, constants stored in given folder will be used\n",
     "cal_db_interface = \"tcp://max-exfl016:8016\" # the database interface to use\n",
     "cal_db_timeout = 180000 # timeout on caldb requests\",\n",
     "plot_range = 3 # range for plotting in units of median absolute deviations\n",
-    "spShape = [256, 256] # Shape of superpixel"
+    "spShape = [64, 64] # Shape of superpixel\n",
+    "sp_name = 'ASIC IDs' # name of superpixel\n",
+    "gain_titles = ['High gain', 'Medium gain', 'Low gain'] # Title inset related to gain"
    ]
   },
   {
@@ -74,7 +78,7 @@
     "from iCalibrationDB import Constants, Conditions, Detectors, ConstantMetaData\n",
     "from cal_tools.tools import get_from_db, get_random_db_interface\n",
     "from cal_tools.ana_tools import (save_dict_to_hdf5, load_data_from_hdf5, \n",
-    "                                 HMType, IMType, hm_combine,\n",
+    "                                 HMType, IMType, hm_combine, combine_constants,\n",
     "                                 combine_lists, get_range)"
    ]
   },
@@ -85,9 +89,28 @@
    "outputs": [],
    "source": [
     "# Prepare variables\n",
+    "submodules = [\"Q{}M{}\".format(x // 4 + 1, x % 4 + 1) for x in submodules]\n",
+    "\n",
+    "# No submodules for small detectors\n",
+    "if dclass not in ['AGIPD', 'LPD']:\n",
+    "    submodules = ['']\n",
+    "\n",
+    "# 0 is considered as None.\n",
+    "acquisition_rate = [x if x>0 else None for x in acquisition_rate]\n",
+    "\n",
+    "nMem = max(memory_cells) # Number of mem Cells to store\n",
+    "\n",
     "parameters = [globals()[x] for x in parameter_names]\n",
     "\n",
-    "constantsDark = {'Noise': 'BadPixelsDark',\n",
+    "# Empty list from the command line may not work\n",
+    "if separate_plot == ['']:\n",
+    "    separate_plot = []\n",
+    "\n",
+    "# Mapping between consatnts and their bad pixel maps \n",
+    "constantsDark = {\"SlopesFF\": 'BadPixelsFF',\n",
+    "                 'SlopesPC': 'BadPixelsPC',\n",
+    "                 'SlopesCI': 'BadPixelsCI',\n",
+    "                 'Noise': 'BadPixelsDark',\n",
     "                 'Offset': 'BadPixelsDark'}\n",
     "print('Bad pixels data: ', constantsDark)\n",
     "\n",
@@ -134,6 +157,9 @@
     "    for db_module in modules:\n",
     "        det = getattr(Detectors, db_module)\n",
     "        \n",
+    "        if dclass in ['AGIPD', 'LPD']:\n",
+    "            det = getattr(det, submodules[0])\n",
+    "        \n",
     "        # Get getector conditions\n",
     "        if dclass=='CCD':\n",
     "            dconstants = getattr(Constants, dclass)(det.detector_type)\n",
@@ -146,7 +172,7 @@
     "        # Loop over parameters\n",
     "        for pars in parameter_list:\n",
     "\n",
-    "            if (const in [\"Offset\", \"Noise\", \"SlopesPC\"] or \"DARK\" in const.upper()):\n",
+    "            if (const in [\"Offset\", \"Noise\", \"SlopesPC\", \"SlopesCI\"] or \"DARK\" in const.upper()):\n",
     "                dcond = Conditions.Dark\n",
     "                mcond = getattr(dcond, dclass)(**pars)\n",
     "            else:\n",
@@ -286,8 +312,24 @@
    },
    "outputs": [],
    "source": [
+    "def prepare_to_store(a, nMem):\n",
+    "    \"\"\"\n",
+    "    Different constants for AGIPD and LPD may have different array shape.\n",
+    "    This function unify array shape.\n",
+    "    \"\"\"\n",
+    "    if dclass in ['AGIPD', 'LPD']:\n",
+    "        shape = list(a.shape[:2])+[nMem]\n",
+    "        b = np.full(shape, np.nan)\n",
+    "        b[:, :, :a.shape[2]] = a[:, :, :]\n",
+    "        return b\n",
+    "    else:\n",
+    "        return a\n",
+    "\n",
     "def get_rebined(a, rebin):\n",
-    "    if dclass==\"jungfrau\":\n",
+    "    \"\"\"\n",
+    "    Group of pixels are formed here for better visialization\n",
+    "    \"\"\"\n",
+    "    if dclass in ['AGIPD', 'LPD', 'jungfrau']:\n",
     "        return a.reshape(\n",
     "                int(a.shape[0] / rebin[0]),\n",
     "                rebin[0],\n",
@@ -305,8 +347,59 @@
     "        \n",
     "\n",
     "def modify_const(const, data, isBP = False):\n",
+    "    \"\"\"\n",
+    "    Shape of an array for some constants changes over time.\n",
+    "    Modification is needed to unify shape of array and\n",
+    "    make possible to show constants on the same plot.\n",
+    "    \"\"\"\n",
     "    if dclass==\"jungfrau\" and data.shape[1] == 512:\n",
     "        data = data.swapaxes(0, 1)\n",
+    "        return data\n",
+    "    \n",
+    "    if dclass==\"AGIPD\":\n",
+    "        const = const.split('_')[0]\n",
+    "        if const in ['SlopesFF']:\n",
+    "            if (len(data.shape) == 4):\n",
+    "                data = data[:, :, :, 0][..., None]\n",
+    "            else:\n",
+    "                data = data[..., None]\n",
+    "\n",
+    "            if data.shape[2]<3:\n",
+    "                data = data[:,:,0,None]\n",
+    "\n",
+    "        if not isBP:\n",
+    "            if data.shape[0] != 128:\n",
+    "                data = data.swapaxes(0, 2).swapaxes(1, 3).swapaxes(2, 3)\n",
+    "\n",
+    "            # Copy slope medium to be saved later\n",
+    "            if const in ['SlopesPC']:\n",
+    "                data[:, :, :, 1] = data[:, :, :, 3]\n",
+    "        else:\n",
+    "            if const in ['SlopesPC']:\n",
+    "                if len(data.shape) == 3:\n",
+    "                    data = data[:, :, :, None].repeat(10, axis=3)\n",
+    "\n",
+    "            if data.shape[0] != 128:\n",
+    "                data = data.swapaxes(0, 1).swapaxes(1, 2)\n",
+    "\n",
+    "        if len(data.shape) < 4:\n",
+    "            print(data.shape, \"Unexpected shape!\")\n",
+    "        return data\n",
+    "    \n",
+    "    if dclass==\"LPD\":\n",
+    "        const = const.split('_')[0]\n",
+    "        if const in ['SlopesFF']:\n",
+    "            data = data[..., None, None]\n",
+    "\n",
+    "        if(len(data.shape)==5):\n",
+    "            data = data[:,:,:,:,0]\n",
+    "\n",
+    "        if len(data.shape) < 4:\n",
+    "            print(data.shape, \"Unexpected shape!\")\n",
+    "\n",
+    "        if data.shape[0] != 256:\n",
+    "            data = data.swapaxes(0, 2).swapaxes(1,3).swapaxes(2,3) \n",
+    "    \n",
     "    return data\n",
     "\n",
     "ret_constants = {}\n",
@@ -323,12 +416,18 @@
     "    # fix naming for Jungfrau039\n",
     "    if qm == 'Jungfrau1':\n",
     "        qm = 'JungfrauM039'\n",
+    "    # use submodule name for big detectors\n",
+    "    if dclass in ['AGIPD', 'LPD']:\n",
+    "        qm = submodules[0]\n",
     "    \n",
+    "    # Add insets for parameters\n",
     "    for key in separate_plot:\n",
-    "        const = '{}_{}{}'.format(const, key[0], constant_parameters[i][key])\n",
-    "    # Constant for jungfrau already contains gain stages\n",
-    "    if dclass == \"jungfrau\":\n",
-    "        const += '_g0'\n",
+    "        # Several constant already contains gain stages\n",
+    "        if key == 'gain_setting' and dclass in ['AGIPD', 'LPD', 'jungfrau']:\n",
+    "            val = 0\n",
+    "        else:\n",
+    "            val = constant_parameters[i][key]\n",
+    "        const = '{}_{}{}'.format(const, key[0], val)\n",
     "        \n",
     "    if not const in ret_constants:\n",
     "        ret_constants[const] = {}\n",
@@ -351,7 +450,7 @@
     "        \n",
     "        if cdataBP.shape != cdata.shape:\n",
     "            print('Wrong bad pixel shape! {}, expected {}'.format(cdataBP.shape, cdata.shape))\n",
-    "            continue\n",
+    "            cdataBP = np.full_like(cdata, IMType.NO_BPMAP.value)\n",
     "        \n",
     "        # Apply bad pixel mask\n",
     "        cdataABP = np.copy(cdata)\n",
@@ -379,10 +478,18 @@
     "    # Convert parameters to dict\n",
     "    dpar = {p.name: p.value for p in constant_data.detector_condition.parameters}\n",
     "    \n",
+    "    # Several constants have dimensions running over gain.\n",
+    "    # All gain stages are stored as separate arrays.\n",
     "    if len(toStore.shape)==4:\n",
     "        for i in range(3):\n",
-    "            if i>0:\n",
+    "            if i>0 and 'gain_setting' in separate_plot:\n",
     "                const = const.replace('_g{}'.format(i-1), '_g{}'.format(i))\n",
+    "            # FF has only high gain\n",
+    "            if 'SlopesFF' in const and i>0:\n",
+    "                continue\n",
+    "            # PC only high and medium.\n",
+    "            if 'SlopesPC' in const and i>1:\n",
+    "                continue\n",
     "                \n",
     "            if not const in ret_constants:\n",
     "                ret_constants[const] = {}\n",
@@ -390,11 +497,11 @@
     "                ret_constants[const][qm] = []\n",
     "            print(\"Store values in dict\", const, qm, ctime)\n",
     "            ret_constants[const][qm].append({'ctime': ctime,\n",
-    "                                     'nBP': cdataNBP[:,:,0,i],\n",
-    "                                     'dataBP': toStoreBP[:,:,0,i],\n",
-    "                                     'dataBPStd': toStoreBPStd[:,:,0,i],\n",
-    "                                     'data': toStore[:,:,0,i],\n",
-    "                                     'dataStd': toStoreStd[:,:,0,i],\n",
+    "                                     'nBP': prepare_to_store(cdataNBP[:,:,:,i], nMem),\n",
+    "                                     'dataBP': prepare_to_store(toStoreBP[:,:,:,i], nMem),\n",
+    "                                     'dataBPStd': prepare_to_store(toStoreBPStd[:,:,:,i], nMem),\n",
+    "                                     'data': prepare_to_store(toStore[:,:,:,i], nMem),\n",
+    "                                     'dataStd': prepare_to_store(toStoreStd[:,:,:,i], nMem),\n",
     "                                     'mdata': dpar}) \n",
     "        \n",
     "        \n",
@@ -420,9 +527,9 @@
    "outputs": [],
    "source": [
     "if use_existing == \"\":\n",
-    "    print('Save data to /CalDBAna_{}_{}.h5'.format(dclass, db_module))\n",
+    "    print('Save data to {}/CalDBAna_{}_{}_{}.h5'.format(out_folder, dclass, db_module, submodules[0]))\n",
     "    save_dict_to_hdf5(ret_constants,\n",
-    "                      '{}/CalDBAna_{}_{}.h5'.format(out_folder, dclass, db_module))"
+    "                      '{}/CalDBAna_{}_{}_{}.h5'.format(out_folder, dclass, db_module, submodules[0]))"
    ]
   },
   {
@@ -432,14 +539,109 @@
    "outputs": [],
    "source": [
     "if use_existing == \"\":\n",
-    "    fpath = '{}/CalDBAna_{}_*.h5'.format(out_folder, dclass)\n",
+    "    fpath = '{}/CalDBAna_{}_{}_{}.h5'.format(out_folder, dclass, db_module, submodules[0])\n",
     "else:\n",
-    "    fpath = '{}/CalDBAna_{}_*.h5'.format(use_existing, dclass)\n",
+    "    fpath = '{}/CalDBAna_{}_{}_{}.h5'.format(use_existing, dclass, db_module, submodules[0])\n",
     "\n",
     "print('Load data from {}'.format(fpath))\n",
     "ret_constants = load_data_from_hdf5(fpath)"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# For AGIPD and LPD\n",
+    "# Combine FF and PC data to calculate Gain\n",
+    "# Estimate Noise in units of electrons\n",
+    "\n",
+    "ret_constants[\"Gain_g0\"] = {}\n",
+    "ret_constants[\"Noise-e_g0\"] = {}\n",
+    "\n",
+    "for mod in list(range(16)):\n",
+    "    # The check is perform inside the for loop\n",
+    "    # in order to use break\n",
+    "    # This make code more readable\n",
+    "    if (\"SlopesFF_g0\" not in ret_constants or\n",
+    "            \"SlopesPC_g0\" not in ret_constants):\n",
+    "        break\n",
+    "\n",
+    "    qm = \"Q{}M{}\".format(mod // 4 + 1, mod % 4 + 1)\n",
+    "    if (qm not in ret_constants[\"SlopesFF_g0\"] or\n",
+    "            qm not in ret_constants[\"SlopesPC_g0\"]):\n",
+    "        continue\n",
+    "\n",
+    "    print(qm)\n",
+    "    ret_constants[\"Gain_g0\"][qm] = {}\n",
+    "\n",
+    "    dataFF = ret_constants[\"SlopesFF_g0\"][qm]\n",
+    "    dataPC = ret_constants[\"SlopesPC_g0\"][qm]\n",
+    "\n",
+    "    if (len(dataFF) == 0 or len(dataPC) == 0):\n",
+    "        continue\n",
+    "\n",
+    "    ctimesFF = np.array(dataFF[\"ctime\"])\n",
+    "    ctimesPC = np.array(dataPC[\"ctime\"])\n",
+    "\n",
+    "    ctime, icomb = combine_constants(ctimesFF, ctimesPC)\n",
+    "\n",
+    "    cdataPC_vs_time = np.array(dataPC[\"data\"])[...]\n",
+    "    cdataFF_vs_time = np.array(dataFF[\"data\"])[...]\n",
+    "\n",
+    "    cdataFF_vs_time = np.nanmedian(cdataFF_vs_time, axis=3)[..., None]\n",
+    "\n",
+    "    cdataFF_vs_time /= np.nanmedian(cdataFF_vs_time, axis=(1, 2, 3))[:, None,\n",
+    "                       None, None]\n",
+    "    cdataPC_vs_time /= np.nanmedian(cdataPC_vs_time, axis=(1, 2, 3))[:, None,\n",
+    "                       None, None]\n",
+    "\n",
+    "    gain_vs_time = []\n",
+    "    for iFF, iPC in icomb:\n",
+    "        gain_vs_time.append(cdataFF_vs_time[iFF] * cdataPC_vs_time[iPC])\n",
+    "\n",
+    "    print('Shape of gain array: ', np.array(gain_vs_time).shape)\n",
+    "    \n",
+    "    ctime_ts = [t.timestamp() for t in ctime]\n",
+    "    \n",
+    "    ret_constants[\"Gain_g0\"][qm][\"ctime\"] = ctime\n",
+    "    ret_constants[\"Gain_g0\"][qm][\"data\"] = np.array(gain_vs_time)\n",
+    "\n",
+    "    if \"Noise_g0\" not in ret_constants:\n",
+    "        continue\n",
+    "\n",
+    "    if qm not in ret_constants[\"Noise_g0\"]:\n",
+    "        continue\n",
+    "\n",
+    "    dataN = ret_constants[\"Noise_g0\"][qm]\n",
+    "    if len(dataN) == 0:\n",
+    "        continue\n",
+    "\n",
+    "    ret_constants[\"Noise-e_g0\"][qm] = {}\n",
+    "            \n",
+    "    ctimesG = np.array(ctime)\n",
+    "    ctimesN = np.array(dataN[\"ctime\"])\n",
+    "\n",
+    "    ctime, icomb = combine_constants(ctimesG, ctimesN)\n",
+    "\n",
+    "    cdataG_vs_time = np.array(gain_vs_time)\n",
+    "    cdataN_vs_time = np.array(dataN[\"data\"])[...]\n",
+    "\n",
+    "    data_vs_time = []\n",
+    "    for iG, iN in icomb:\n",
+    "        data_vs_time.append(\n",
+    "            cdataN_vs_time[iN] * adu_to_photon / cdataG_vs_time[iG])\n",
+    "\n",
+    "    print('Shape of gain array: ',np.array(gain_vs_time).shape)\n",
+    "    ctime_ts = [t.timestamp() for t in ctime]\n",
+    "    ret_constants[\"Noise-e_g0\"][qm][\"ctime\"] = ctime\n",
+    "    ret_constants[\"Noise-e_g0\"][qm][\"data\"] = np.array(data_vs_time)\n",
+    "    \n",
+    "save_dict_to_hdf5({k:v for k,v in ret_constants.items() if k in ['Gain_g0', 'Noise-e_g0']},\n",
+    "                  '{}/CalDBAna_{}_Gain.h5'.format(out_folder, dclass))"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -452,7 +654,7 @@
     "    'Mean': ['data', '', 'Mean over pixels'],\n",
     "    'std': ['dataStd', '', '$\\sigma$ over pixels'],\n",
     "    'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n",
-    "    'NBP': ['nBP', 'Fraction of BP', 'Number of BP'],\n",
+    "    'NBP': ['nBP', '', 'Fraction of BP'],\n",
     "    'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n",
     "}\n"
    ]
@@ -470,134 +672,171 @@
     "# loop over constat type\n",
     "for const, modules in ret_constants.items():\n",
     "    \n",
+    "    # split key to constant name and list of insets\n",
     "    const = const.split(\"_\")\n",
-    "    if True:\n",
-    "\n",
-    "        print('Const: {}'.format(const))\n",
+    "    gain = [int(x[1]) for x in const if 'g' in x]\n",
+    "    gain = gain[0] if len(gain)>0 else None\n",
+    "    \n",
+    "    print('Const: {}'.format(const))\n",
     "\n",
-    "        # summary over modules\n",
-    "        mod_data = {}\n",
-    "        mod_names = []\n",
-    "        mod_times = []\n",
+    "    # summary over modules\n",
+    "    mod_data = {}\n",
+    "    mod_names = []\n",
+    "    mod_times = []\n",
     "        \n",
-    "        # Loop over modules\n",
-    "        for mod, data in modules.items():\n",
-    "            print('Module: {}'.format(mod))\n",
-    "\n",
-    "            ctimes = np.array(data[\"ctime\"])\n",
-    "            ctimes_ticks = [x.strftime('%y-%m-%d') for x in ctimes]\n",
-    "\n",
-    "            if (\"mdata\" in data):\n",
-    "                cmdata = np.array(data[\"mdata\"])\n",
-    "                for i, tick in enumerate(ctimes_ticks):\n",
-    "                    for entr in x_labels:\n",
-    "                        ctimes_ticks[i] += ', {}={}'.format(entr[0].upper(), \n",
-    "                                                           cmdata[i].get(entr, None))\n",
-    "\n",
-    "            sort_ind = np.argsort(ctimes_ticks)\n",
-    "            ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n",
-    "\n",
-    "            # Create sorted by data dataset\n",
-    "            rdata = {}\n",
-    "            for key, item in keys.items():\n",
-    "                if item[0] in data:\n",
-    "                    rdata[key] = np.array(data[item[0]])[sort_ind]\n",
-    "\n",
-    "            nTimes = rdata['Mean'].shape[0]\n",
-    "            nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n",
-    "            nBins = nPixels\n",
-    "            \n",
-    "            # Avoid to low values\n",
-    "            if const[0] in [\"Noise10Hz\", \"Offset10Hz\"]:\n",
-    "                rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n",
-    "                if 'MeanBP' in rdata:\n",
-    "                    rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n",
-    "                if 'NBP' in rdata:\n",
-    "                    rdata['NBP'] = rdata['NBP'].astype(float)\n",
-    "                    rdata['NBP'][rdata['NBP'] == spShape[0]*spShape[1]] = np.nan\n",
-    "\n",
-    "            # Reshape: ASICs over cells for plotting\n",
-    "            pdata = {}\n",
-    "            for key in rdata:\n",
-    "                if len(rdata[key].shape)<3:\n",
-    "                    continue\n",
+    "    # Loop over modules\n",
+    "    for mod, data in modules.items():\n",
+    "        print('Module: {}'.format(mod))\n",
+    "\n",
+    "        ctimes = np.array(data[\"ctime\"])\n",
+    "        ctimes_ticks = [x.strftime('%y-%m-%d') for x in ctimes]\n",
+    "\n",
+    "        if (\"mdata\" in data):\n",
+    "            cmdata = np.array(data[\"mdata\"])\n",
+    "            for i, tick in enumerate(ctimes_ticks):\n",
+    "                for entr in x_labels:\n",
+    "                    key  = entr[0].upper()\n",
+    "                    val = cmdata[i].get(entr, None)\n",
+    "                    if val is not None:\n",
+    "                        ctimes_ticks[i] += ', {}={:.1f}'.format(key, val)\n",
+    "                        \n",
+    "        sort_ind = np.argsort(ctimes_ticks)\n",
+    "        ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n",
+    "\n",
+    "        # Create sorted by data dataset\n",
+    "        rdata = {}\n",
+    "        for key, item in keys.items():\n",
+    "            if item[0] in data:\n",
+    "                rdata[key] = np.array(data[item[0]])[sort_ind]\n",
+    "\n",
+    "        nTimes = rdata['Mean'].shape[0]\n",
+    "        nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n",
+    "        nBins = nMemToShow * nPixels\n",
+    "\n",
+    "        # Avoid too low values\n",
+    "        if const[0] in [\"Noise10Hz\", \"Offset10Hz\"]:\n",
+    "            rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n",
+    "            if 'MeanBP' in rdata:\n",
+    "                rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n",
+    "            if 'NBP' in rdata:\n",
+    "                rdata['NBP'] = rdata['NBP'].astype(float)\n",
+    "                rdata['NBP'][rdata['NBP'] == spShape[0]*spShape[1]] = np.nan\n",
+    "                rdata[\"NBP\"] = rdata[\"NBP\"] / (spShape[0] * spShape[1]) * 100\n",
+    "\n",
+    "        # Reshape: ASICs over cells for plotting\n",
+    "        pdata = {}\n",
+    "        for key in rdata:\n",
+    "            if len(rdata[key].shape)<3:\n",
+    "                continue\n",
+    "            if dclass in ['AGIPD', 'LPD']:\n",
+    "                pdata[key] = rdata[key][:, :, :, :nMemToShow].reshape(\n",
+    "                nTimes, nBins).swapaxes(0, 1)\n",
+    "            else:\n",
     "                pdata[key] = rdata[key].reshape(nTimes, nBins).swapaxes(0, 1)\n",
     "\n",
-    "            # Summary over ASICs\n",
-    "            adata = {}\n",
-    "            for key in rdata:\n",
-    "                if len(rdata[key].shape)<3:\n",
-    "                    continue\n",
-    "                adata[key] = np.nansum(rdata[key], axis=(1, 2))\n",
-    "\n",
-    "            # Summary information over modules\n",
-    "            for key in pdata:\n",
-    "                if key not in mod_data:\n",
-    "                    mod_data[key] = []\n",
-    "                if key == 'NBP':\n",
-    "                    mod_data[key].append(np.nansum(pdata[key], axis=0))\n",
-    "                else:\n",
-    "                    mod_data[key].append(np.nanmean(pdata[key], axis=0))\n",
-    "\n",
-    "            mod_names.append(mod)\n",
-    "            mod_times.append(ctimes[sort_ind])\n",
-    "            \n",
-    "            # Plotting\n",
-    "            for key in pdata:\n",
-    "                \n",
-    "                if len(pdata[key].shape)<2:\n",
-    "                    continue\n",
-    "                    \n",
-    "                vmin,vmax = get_range(pdata[key][::-1].flatten(), plot_range)\n",
-    "                if key == 'NBP':\n",
-    "                    unit = '[%]'\n",
-    "                else:\n",
-    "                    unit = '[ADU]'\n",
-    "\n",
-    "                title = '{}, module {}, {}'.format(\n",
-    "                    const[0], mod,  keys[key][1])\n",
-    "                cb_label = '{}, {} {}'.format(const[0], keys[key][2], unit)\n",
-    "\n",
-    "                fname = '{}/{}_{}'.format(out_folder, const[0], mod.replace('_', ''))\n",
-    "                for item in const[1:]:\n",
-    "                    fname = '{}_{}'.format(fname, item)\n",
-    "                fname = '{}_ASIC_{}.png'.format(fname, key)\n",
-    "               \n",
-    "                hm_combine(pdata[key][::-1].astype(float), htype=HMType.mro,\n",
-    "                          x_label='Creation Time', y_label='ASIC ID',\n",
-    "                          x_ticklabels=ctimes_ticks,\n",
-    "                          x_ticks=np.arange(len(ctimes_ticks))+0.3,\n",
-    "                          title=title, cb_label=cb_label,\n",
-    "                          vmin=vmin, vmax=vmax,\n",
-    "                          fname=fname,\n",
-    "                          pad=[0.125, 0.125, 0.12, 0.185])\n",
+    "        # Summary over ASICs\n",
+    "        adata = {}\n",
+    "        for key in rdata:\n",
+    "            if len(rdata[key].shape)<3 or nMemToShow==1:\n",
+    "                continue\n",
+    "            adata[key] = np.nanmean(rdata[key], axis=(1, 2)).swapaxes(0, 1)\n",
+    "\n",
+    "        # Summary information over modules\n",
+    "        for key in pdata:\n",
+    "            if key not in mod_data:\n",
+    "                mod_data[key] = []\n",
+    "            if key == 'NBP':\n",
+    "                mod_data[key].append(np.nansum(pdata[key], axis=0))\n",
+    "            else:\n",
+    "                mod_data[key].append(np.nanmean(pdata[key], axis=0))\n",
     "\n",
-    "                \n",
-    "        # Summary over modules\n",
-    "        for key in mod_data:\n",
-    "            \n",
+    "        mod_names.append(mod)\n",
+    "        mod_times.append(ctimes[sort_ind])\n",
+    "\n",
+    "        # Plotting\n",
+    "        for key in pdata:\n",
+    "\n",
+    "            if len(pdata[key].shape)<2:\n",
+    "                continue\n",
+    "\n",
+    "            vmin,vmax = get_range(pdata[key][::-1].flatten(), plot_range)\n",
     "            if key == 'NBP':\n",
-    "                unit = ''\n",
+    "                unit = '[%]'\n",
+    "                title = 'BadPixelsDark'\n",
     "            else:\n",
     "                unit = '[ADU]'\n",
+    "                title = const[0]\n",
     "\n",
-    "            title = '{}, All modules, {}'.format(\n",
-    "                    const[0], keys[key][1])\n",
+    "            title += ', module {}'.format(mod)\n",
+    "            if keys[key][1] != '':\n",
+    "                title += ', {}'.format(keys[key][1])\n",
+    "            if gain is not None:\n",
+    "                title += ', {}'.format(gain_titles[gain])\n",
     "            \n",
-    "            fname = '{}/{}_{}'.format(out_folder, const[0], 'all')\n",
+    "            cb_label = '{}, {} {}'.format(const[0], keys[key][2], unit)\n",
+    "\n",
+    "            fname = '{}/{}_{}'.format(out_folder, const[0], mod.replace('_', ''))\n",
     "            for item in const[1:]:\n",
     "                fname = '{}_{}'.format(fname, item)\n",
     "            fname = '{}_ASIC_{}.png'.format(fname, key)\n",
-    "                \n",
-    "            fig = plt.figure(figsize=(12,12) )\n",
-    "            for i in range(len(mod_data[key])):\n",
-    "                plt.scatter(mod_times[i], mod_data[key][i], label=mod_names[i])\n",
-    "            plt.grid()\n",
-    "            plt.xlabel('Creation Time')\n",
-    "            plt.ylabel('{}, {} {}'.format(const[0], keys[key][2], unit))  \n",
-    "            plt.legend(loc='best guess')\n",
-    "            plt.title(title)\n",
-    "            fig.savefig(fname)\n"
+    "\n",
+    "            if nMemToShow>1:\n",
+    "                htype=HMType.INSET_AXIS\n",
+    "            else:      \n",
+    "                htype=HMType.mro\n",
+    "\n",
+    "            hm_combine(pdata[key][::-1].astype(float), htype=htype,\n",
+    "                      x_label='Creation Time', y_label=sp_name,\n",
+    "                      x_ticklabels=ctimes_ticks,\n",
+    "                      x_ticks=np.arange(len(ctimes_ticks))+0.3,\n",
+    "                      title=title, cb_label=cb_label,\n",
+    "                      vmin=vmin, vmax=vmax,\n",
+    "                      fname=fname,\n",
+    "                      pad=[0.125, 0.125, 0.12, 0.185])\n",
+    "\n",
+    "            if nMemToShow>1:\n",
+    "                vmin,vmax = get_range(adata[key][::-1].flatten(), plot_range)\n",
+    "                hm_combine(adata[key].astype(float), htype=HMType.mro,\n",
+    "                      x_label='Creation Time', y_label='Memory cell ID',\n",
+    "                      x_ticklabels=ctimes_ticks,\n",
+    "                      x_ticks=np.arange(len(ctimes_ticks))+0.3,\n",
+    "                      title=title, cb_label=cb_label,\n",
+    "                      fname=fname.replace('ASIC', 'MEM'),\n",
+    "                      vmin=vmin, vmax=vmax)\n",
+    "\n",
+    "            plt.show()\n",
+    "    # Summary over modules\n",
+    "    for key in mod_data:\n",
+    "        if dclass in ['AGIPD', 'LPD']:\n",
+    "            continue\n",
+    "\n",
+    "        if key == 'NBP':\n",
+    "            unit = '[%]'\n",
+    "            title = 'BadPixelsDark'\n",
+    "        else:\n",
+    "            unit = '[ADU]'\n",
+    "            title = const[0]\n",
+    "\n",
+    "        title += ', module {}'.format(mod)\n",
+    "        if keys[key][1] != '':\n",
+    "            title += ', {}'.format(keys[key][1])\n",
+    "        if gain is not None:\n",
+    "            title += ', {}'.format(gain_titles[gain])\n",
+    "\n",
+    "        fname = '{}/{}_{}'.format(out_folder, const[0], 'all')\n",
+    "        for item in const[1:]:\n",
+    "            fname = '{}_{}'.format(fname, item)\n",
+    "        fname = '{}_ASIC_{}.png'.format(fname, key)\n",
+    "\n",
+    "        fig = plt.figure(figsize=(12,12) )\n",
+    "        for i in range(len(mod_data[key])):\n",
+    "            plt.scatter(mod_times[i], mod_data[key][i], label=mod_names[i])\n",
+    "        plt.grid()\n",
+    "        plt.xlabel('Creation Time')\n",
+    "        plt.ylabel('{}, {} {}'.format(const[0], keys[key][2], unit))  \n",
+    "        plt.legend(loc='best guess')\n",
+    "        plt.title(title)\n",
+    "        fig.savefig(fname)\n"
    ]
   }
  ],
diff --git a/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb b/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb
index a071734e74d3b3b25ec13daaf605b21889ce312d..8d6d6e884b1bfe342e963782e9a51f30feaabe7a 100644
--- a/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb
+++ b/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb
@@ -6,9 +6,13 @@
    "source": [
     "# Statistical analysis of calibration factors#\n",
     "\n",
-    "Author: Mikhail Karnevskiy, Steffen Hauf, Version 0.2\n",
+    "Author: Mikhail Karnevskiy, Version 0.2\n",
     "\n",
-    "Plot calibration constants for AGIPD1M1 detector aggregated within detector modules. Input information is taken from folder `use_existing`. Corresponding files are prepared by `PlotFromCalDB` notebook."
+    "Plot calibration constants retrieved from the cal. DB.\n",
+    "\n",
+    "To be visualized, calibration constants are averaged per group of pixels. Plots shows calibration constant over time for each constant.\n",
+    "\n",
+    "Values shown in plots are saved in h5 files."
    ]
   },
   {
@@ -18,8 +22,8 @@
    "outputs": [],
    "source": [
     "cluster_profile = \"noDB\"  # The ipcluster profile to use\n",
-    "out_folder = \"/gpfs/exfel/data/scratch/karnem/PlotCalDB/MID/AGIPD1M2/\"  # Output folder, required\n",
-    "use_existing = \"/gpfs/exfel/data/scratch/karnem/PlotCalDB/MID/AGIPD1M2/\" # Input folder\n",
+    "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_bla4/\"  # Output folder, required\n",
+    "use_existing = \"/home/karnem/myscratch/PlotCalDB/SPB/AGIPD1M1/\" # Input folder\n",
     "dclass = \"AGIPD\"  # Detector class\n",
     "nMemToShow = 32 # Number of memory cells to be shown in plots over ASICs\n",
     "range_offset = [4000., 5500, 6500, 8500] # plotting range for offset: high gain l, r, medium gain l, r \n",
@@ -30,7 +34,9 @@
     "range_slopesCI = [22.0, 27.0, -0.5, 1.5] # plotting range for slope CI: high gain l, r, medium gain l, r \n",
     "range_slopesFF = [0.8, 1.2, 0.6, 1.2] # plotting range for slope FF: high gain l, r, medium gain l, r \n",
     "plot_range = 3 # range for plotting in units of median absolute deviations\n",
-    "x_labels = ['Sensor Bias Voltage', 'Memory cells'] # parameters to be shown on X axis"
+    "x_labels = ['Sensor Bias Voltage', 'Memory cells'] # parameters to be shown on X axis\n",
+    "spShape = [64, 64] # Shape of superpixel\n",
+    "gain_titles = ['High gain', 'Medium gain', 'Low gain'] # Title inset related to gain"
    ]
   },
   {
@@ -68,7 +74,7 @@
    },
    "outputs": [],
    "source": [
-    "print('Load data from {}/CalDBAna_{}_Q1M2.h5'.format(use_existing, dclass))\n",
+    "print('Load data from {}/CalDBAna_{}_*.h5'.format(use_existing, dclass))\n",
     "ret_constants = load_data_from_hdf5(\n",
     "    '{}/CalDBAna_{}_*.h5'.format(use_existing, dclass))\n",
     "\n",
@@ -100,20 +106,18 @@
     "    'Mean': ['data', '', 'Mean over pixels'],\n",
     "    'std': ['dataStd', '', '$\\sigma$ over pixels'],\n",
     "    'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n",
-    "    'NBP': ['nBP', 'Fraction of BP', 'Fraction of BP'],\n",
+    "    'NBP': ['nBP', '', 'Fraction of BP'],\n",
     "    'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n",
     "    'stdASIC': ['', '', '$\\sigma$ over ASICs'],\n",
     "    'stdCell': ['', '', '$\\sigma$ over Cells'],\n",
-    "}\n",
-    "\n",
-    "gain_name = ['High', 'Medium', 'Low']"
+    "}\n"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
    "metadata": {
-    "scrolled": false
+    "scrolled": true
    },
    "outputs": [],
    "source": [
@@ -122,134 +126,127 @@
     "# loop over constat type\n",
     "for const, modules in ret_constants.items():\n",
     "\n",
-    "    # Loop over gain\n",
-    "    for gain in range(2):\n",
-    "        print('Const: {}, gain : {}'.format(const, gain))\n",
-    "\n",
-    "        if const in [\"Gain\", \"Noise-e\"] and gain == 1:\n",
-    "            continue\n",
-    "\n",
-    "        # loop over modules\n",
-    "        mod_data = {}\n",
-    "        mod_data['stdASIC'] = []\n",
-    "        mod_data['stdCell'] = []\n",
-    "        mod_names = []\n",
-    "        mod_times = []\n",
+    "    const = const.split(\"_\")\n",
+    "    gain = [int(x[1]) for x in const if 'g' in x]\n",
+    "    gain = gain[0] if len(gain)>0 else None\n",
+    "    print('Const: {}, gain {}'.format(const, gain))\n",
     "\n",
-    "        # Loop over modules\n",
-    "        for mod, data in modules.items():\n",
-    "            ctimes = np.array(data[\"ctime\"])\n",
-    "            ctimes_ticks = [x.strftime('%y-%m-%d') for x in ctimes]\n",
+    "    # loop over modules\n",
+    "    mod_data = {}\n",
+    "    mod_data['stdASIC'] = []\n",
+    "    mod_data['stdCell'] = []\n",
+    "    mod_names = []\n",
+    "    mod_times = []\n",
     "\n",
-    "            if (\"mdata\" in data):\n",
-    "                cmdata = np.array(data[\"mdata\"])\n",
-    "                for i, tick in enumerate(ctimes_ticks):\n",
-    "                    for entr in x_labels:\n",
-    "                        ctimes_ticks[i] += ', {}={}'.format(entr[0].upper(), \n",
-    "                                                           cmdata[i].get(entr, None))\n",
+    "    # Loop over modules\n",
+    "    for mod, data in modules.items():\n",
+    "        ctimes = np.array(data[\"ctime\"])\n",
+    "        ctimes_ticks = [x.strftime('%y-%m-%d') for x in ctimes]\n",
     "\n",
-    "            sort_ind = np.argsort(ctimes_ticks)\n",
-    "            ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n",
+    "        if (\"mdata\" in data):\n",
+    "            cmdata = np.array(data[\"mdata\"])\n",
+    "            for i, tick in enumerate(ctimes_ticks):\n",
+    "                for entr in x_labels:\n",
+    "                    key  = entr[0].upper()\n",
+    "                    val = cmdata[i].get(entr, None)\n",
+    "                    if val is not None:\n",
+    "                        ctimes_ticks[i] += ', {}={:.1f}'.format(key, val)\n",
     "\n",
-    "            # Create sorted by data dataset\n",
-    "            rdata = {}\n",
-    "            for key, item in keys.items():\n",
-    "                if item[0] in data:\n",
-    "                    rdata[key] = np.array(data[item[0]])[sort_ind]\n",
+    "        sort_ind = np.argsort(ctimes_ticks)\n",
+    "        ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n",
     "\n",
-    "            nTimes = rdata['Mean'].shape[0]\n",
-    "            nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n",
-    "            nBins = nMemToShow * nPixels\n",
+    "        # Create sorted by data dataset\n",
+    "        rdata = {}\n",
+    "        for key, item in keys.items():\n",
+    "            if item[0] in data:\n",
+    "                rdata[key] = np.array(data[item[0]])[sort_ind]\n",
     "\n",
-    "            # Select gain\n",
-    "            if const not in [\"Gain\", \"Noise-e\"]:\n",
-    "                for key in rdata:\n",
-    "                    rdata[key] = rdata[key][..., gain]\n",
+    "        nTimes = rdata['Mean'].shape[0]\n",
+    "        nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n",
+    "        nBins = nMemToShow * nPixels\n",
     "\n",
-    "            if 'NBP' in rdata:\n",
-    "                rdata[\"NBP\"] = rdata[\"NBP\"] / (64 * 64) * 100\n",
+    "        if 'NBP' in rdata:\n",
+    "            rdata[\"NBP\"] = rdata[\"NBP\"] / (spShape[0] * spShape[1]) * 100\n",
     "\n",
-    "            # Reshape: ASICs over cells for plotting\n",
-    "            pdata = {}\n",
-    "            for key in rdata:\n",
-    "                pdata[key] = rdata[key][:, :, :, :nMemToShow].reshape(\n",
-    "                    nTimes, nBins).swapaxes(0, 1)\n",
+    "        # Reshape: ASICs over cells for plotting\n",
+    "        pdata = {}\n",
+    "        for key in rdata:\n",
+    "            pdata[key] = rdata[key][:, :, :, :nMemToShow].reshape(\n",
+    "                nTimes, nBins).swapaxes(0, 1)\n",
     "\n",
-    "            # Summary information over modules\n",
-    "            for key in pdata:\n",
-    "                if key not in mod_data:\n",
-    "                    mod_data[key] = []\n",
-    "                    \n",
-    "                mod_data[key].append(np.nanmean(pdata[key], axis=0))\n",
-    "                # Avoid too low values\n",
-    "                if const in [\"Noise\", \"Offset\", \"Noise-e\"] and key in ['Mean', 'MeanBP']:\n",
-    "                    mod_data[key][-1][mod_data[key][-1] == 0.0] = IMType.STRANGE_VAL.value\n",
-    "                if key=='NBP':\n",
-    "                    if 'Mean' in mod_data:\n",
-    "                        mod_data['Mean'][-1][mod_data[key][-1] == 100] = IMType.ALL_BAD.value\n",
-    "                    if 'MeanBP' in mod_data:\n",
-    "                        mod_data['MeanBP'][-1][mod_data[key][-1] == 100] = IMType.ALL_BAD.value\n",
-    "                    mod_data[key][-1][mod_data[key][-1] == 100] = IMType.ALL_BAD.value\n",
-    "                \n",
+    "        # Summary information over modules\n",
+    "        for key in pdata:\n",
+    "            if key not in mod_data:\n",
+    "                mod_data[key] = []\n",
     "\n",
-    "            mod_data['stdASIC'].append(np.nanstd(\n",
-    "                np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=(1, 2)), axis=1))\n",
-    "            mod_data['stdCell'].append(np.nanstd(\n",
-    "                np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=3), axis=(1, 2)))\n",
+    "            mod_data[key].append(np.nanmean(pdata[key], axis=0))\n",
+    "            # Avoid too low values\n",
+    "            if const[0] in [\"Noise\", \"Offset\", \"Noise-e\"] and key in ['Mean', 'MeanBP']:\n",
+    "                mod_data[key][-1][mod_data[key][-1] == 0.0] = IMType.STRANGE_VAL.value\n",
+    "            if key=='NBP':\n",
+    "                if 'Mean' in mod_data:\n",
+    "                    mod_data['Mean'][-1][mod_data[key][-1] == 100] = IMType.ALL_BAD.value\n",
+    "                if 'MeanBP' in mod_data:\n",
+    "                    mod_data['MeanBP'][-1][mod_data[key][-1] == 100] = IMType.ALL_BAD.value\n",
+    "                mod_data[key][-1][mod_data[key][-1] == 100] = IMType.ALL_BAD.value\n",
     "\n",
-    "            mod_names.append(mod)\n",
-    "            mod_times.append(ctimes_ticks)\n",
     "\n",
-    "        # Incert nans to get array-like list of data\n",
-    "        uTime = mod_times[0]\n",
-    "        for tlist in mod_times:\n",
-    "            uTime = sorted(multi_union(uTime, tlist))\n",
+    "        mod_data['stdASIC'].append(np.nanstd(\n",
+    "            np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=(1, 2)), axis=1))\n",
+    "        mod_data['stdCell'].append(np.nanstd(\n",
+    "            np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=3), axis=(1, 2)))\n",
     "\n",
-    "        for i, tlist in enumerate(mod_times):\n",
-    "            for t, time in enumerate(uTime):\n",
-    "                if t == len(tlist) or time != tlist[t]:\n",
-    "                    tlist.insert(t, time)\n",
-    "                    for key in mod_data:\n",
-    "                        mod_data[key][i] = np.insert(\n",
-    "                            mod_data[key][i], t, IMType.NO_CONST.value )\n",
+    "        mod_names.append(mod)\n",
+    "        mod_times.append(ctimes_ticks)\n",
     "\n",
-    "        # Plotting\n",
-    "        nModules = len(mod_names)\n",
-    "        mod_idx = np.argsort(mod_names)\n",
-    "        for key in mod_data:\n",
-    "            vmin,vmax = get_range(np.array(mod_data[key])[mod_idx][::-1].flatten(), plot_range)\n",
-    "            if const in rangevals and key in ['Mean', 'MeanBP']:\n",
-    "                vmin = rangevals[const][gain][0]\n",
-    "                vmax = rangevals[const][gain][1]\n",
+    "    # Insert nans to get array-like list of data\n",
+    "    uTime = mod_times[0]\n",
+    "    for tlist in mod_times:\n",
+    "        uTime = sorted(multi_union(uTime, tlist))\n",
     "\n",
-    "            htype = None\n",
-    "            if const in ['SlopesFF', 'SlopesPC', 'SlopesCI']:\n",
-    "                htype = HMType.INSET_1D\n",
+    "    for i, tlist in enumerate(mod_times):\n",
+    "        for t, time in enumerate(uTime):\n",
+    "            if t == len(tlist) or time != tlist[t]:\n",
+    "                tlist.insert(t, time)\n",
+    "                for key in mod_data:\n",
+    "                    mod_data[key][i] = np.insert(\n",
+    "                        mod_data[key][i], t, IMType.NO_CONST.value )\n",
     "\n",
-    "            if key == 'NBP':\n",
-    "                unit = '[%]'\n",
-    "            else:\n",
-    "                unit = '[ADU]'\n",
-    "                if const == 'Noise-e':\n",
-    "                    unit = '[$e^-$]'\n",
+    "    # Plotting\n",
+    "    nModules = len(mod_names)\n",
+    "    mod_idx = np.argsort(mod_names)\n",
+    "    for key in mod_data:\n",
+    "        vmin,vmax = get_range(np.array(mod_data[key])[mod_idx][::-1].flatten(), plot_range)\n",
     "\n",
-    "            title = '{}, All modules, {} gain, {}'.format(\n",
-    "                    const, gain_name[gain], keys[key][1])\n",
-    "            cb_label = '{}, {} {}'.format(const, keys[key][2], unit)\n",
+    "        htype = None\n",
+    "        if const[0] in ['SlopesFF', 'SlopesPC', 'SlopesCI']:\n",
+    "            htype = HMType.INSET_1D\n",
+    "            \n",
+    "        if key == 'NBP':\n",
+    "            unit = '[%]'\n",
+    "            title = 'BadPixelsDark'\n",
+    "        else:\n",
+    "            unit = '[ADU]'\n",
+    "            title = const[0]\n",
     "\n",
-    "            hm_combine(np.array(mod_data[key])[mod_idx][::-1],\n",
-    "                      y_ticks=np.arange(nModules)[::-1]+0.8,\n",
-    "                      y_ticklabels=np.array(mod_names)[mod_idx],\n",
-    "                      x_label='Creation Time', y_label='Module ID',\n",
-    "                      x_ticklabels=ctimes_ticks, x_ticks=np.arange(\n",
-    "                              len(ctimes_ticks))+0.3,\n",
-    "                      title=title, cb_label=cb_label,\n",
-    "                      fname='{}/{}_all_g{}_{}.png'.format(\n",
-    "                out_folder, const, gain, key),\n",
-    "                vmin=vmin, vmax=vmax,\n",
-    "                pad=[0.125, 0.151, 0.12, 0.17], htype=htype)\n",
-    "        #break\n",
-    "    #break"
+    "        title += ', All modules'\n",
+    "        if keys[key][1] != '':\n",
+    "            title += ', {}'.format(keys[key][1])\n",
+    "        if gain is not None:\n",
+    "            title += ', {}'.format(gain_titles[gain])\n",
+    "        \n",
+    "        cb_label = '{}, {} {}'.format(const[0], keys[key][2], unit)\n",
+    "        hm_combine(np.array(mod_data[key])[mod_idx][::-1],\n",
+    "                  y_ticks=np.arange(nModules)[::-1]+0.8,\n",
+    "                  y_ticklabels=np.array(mod_names)[mod_idx],\n",
+    "                  x_label='Creation Time', y_label='Module ID',\n",
+    "                  x_ticklabels=ctimes_ticks, x_ticks=np.arange(\n",
+    "                          len(ctimes_ticks))+0.3,\n",
+    "                  title=title, cb_label=cb_label,\n",
+    "                  fname='{}/{}_all_g{}_{}.png'.format(\n",
+    "            out_folder, const[0], gain, key),\n",
+    "            vmin=vmin, vmax=vmax,\n",
+    "            pad=[0.125, 0.151, 0.12, 0.17], htype=htype)\n"
    ]
   }
  ],
diff --git a/reportservice/report_conf.yaml b/reportservice/report_conf.yaml
index 2fc336768a8131196c7da0fc17d2060314d05600..b8fbc0c3e49415474dcb3e441976f082b8516ae6 100644
--- a/reportservice/report_conf.yaml
+++ b/reportservice/report_conf.yaml
@@ -18,22 +18,110 @@ GLOBAL:
 SPB:
     AGIPD1M1:
         det-type:
-            - "AGIPD"
-            - "STATS_FROM_DB"
+            - "GENERIC"
+            - "STATS_FROM_DB2"
+        modules: 
+            - "AGIPD1M1"
         start-date: "2019-01-01"
-        end-date: "2019-12-12"
+        end-date: "NOW"
+        nconstants: 20
         constants:
             - "Noise"
             - "SlopesFF"
             - "SlopesPC"
             - "Offset"
-        modules: "0-16"
-        bias-voltages:
+        dclass: "AGIPD"
+        submodules: "0-16"
+        bias-voltage:
             - 300
             - 500
-        mem-cells:
+        memory-cells:
             - 128
             - 176
+            - 250
+        acquisition-rate:
+            - 1.1
+            - 2.2
+            - 4.5 
+        photon-energy: 9.2
+        separate-plot:
+            - "gain_setting"
+        parameter-names:
+            - "bias_voltage"
+            - "acquisition_rate"
+            - "memory_cells"
+        spShape:
+            - 64
+            - 64
+        gain-titles:
+            - "High gain"
+            - "Medium gain"
+            - "Low gain"
+        x-labels:
+            - "Acquisition rate"
+            - "Memory cells"
+        sp-name: "ASICs id"
+        nMemToShow: 32
+        use-existing: "''"
+        out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
+        cal-db-timeout: 180000
+        cal-db-interface: "tcp://max-exfl016:8015#8025"
+
+    JUNGFRAU:
+        det-type:
+            - "GENERIC"
+            - "STATS_FROM_DB"
+        start-date: "2019-01-01"
+        end-date: "NOW"
+        nconstants: 20
+        constants:
+            - "Noise"
+            - "Offset"
+        dclass: "jungfrau"
+        nMemToShow: 1
+        modules:
+            - "Jungfrau_M035"
+            - "Jungfrau_M203"
+            - "Jungfrau_M221"
+        bias-voltage:
+            - 90
+            - 180
+        memory-cells:
+            - 1
+        pixels-x:
+            - 1024
+        pixels-y:
+            - 512
+            - 1024
+        temperature:
+            - 291
+        integration-time:
+            - 50
+            - 250
+        gain-setting:
+            - 0
+        separate-plot:
+            - "integration_time"
+            - "gain_setting"
+        parameter-names:
+            - "bias_voltage"
+            - "integration_time"
+            - "pixels_x"
+            - "pixels_y"
+            - "gain_setting"
+            - "temperature"
+            - "memory_cells"
+        spShape:
+            - 256
+            - 64
+        gain-titles:
+            - "High gain"
+            - "Medium gain"
+            - "Low gain"
+        x-labels:
+            - "Sensor Temperature"
+            - "Integration Time"
+        sp-name: "Supercolumn 256*64"
         photon-energy: 9.2
         use-existing: "''"
         out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
@@ -43,65 +131,67 @@ SPB:
 MID:
     AGIPD1M2:
         det-type:
-            - "AGIPD"
-            - "STATS_FROM_DB"
-        db-module: "AGIPD1M2"
+            - "GENERIC"
+            - "STATS_FROM_DB2"
+        modules: 
+            - "AGIPD1M2"
         start-date: "2019-01-01"
-        end-date: "2019-12-12"
+        end-date: "NOW"
+        nconstants: 20
         constants:
             - "Noise"
             - "SlopesFF"
             - "SlopesPC"
             - "Offset"
-        modules: "0-16"
-        bias-voltages:
+        dclass: "AGIPD"
+        submodules: "0-16"
+        bias-voltage:
             - 300
             - 500
-        mem-cells:
+        memory-cells:
+            - 128
             - 176
+            - 250
+        acquisition-rate:
+            - 1.1
+            - 2.2
+            - 4.5 
         photon-energy: 9.2
+        separate-plot:
+            - "gain_setting"
+        parameter-names:
+            - "bias_voltage"
+            - "acquisition_rate"
+            - "memory_cells"
+        spShape:
+            - 64
+            - 64
+        gain-titles:
+            - "High gain"
+            - "Medium gain"
+            - "Low gain"
+        x-labels:
+            - "Acquisition rate"
+            - "Memory cells"
+        sp-name: "ASICs id"
+        nMemToShow: 32
         use-existing: "''"
         out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
         cal-db-timeout: 180000
         cal-db-interface: "tcp://max-exfl016:8015#8025"
-        range-offset:
-            - 800.
-            - 1500.
-            - 600
-            - 900
-        range-noise:
-            - 2.0
-            - 16.
-            - 1.0
-            - 7.0
-        range-gain:
-            - 20
-            - 30
-            - 20
-            - 30
-        range-noise-e:
-            - 100.
-            - 600.
-            - 100.
-            - 600.
-        range-slopesPC:
-            - 0.95
-            - 1.05
-            - 0.0
-            - 0.5
-        range-slopesFF:
-            - 0.8
-            - 1.2
-            - 0.8
-            - 1.2 
-
-    EPIX01:
+
+    EPIX:
         det-type:
-            - "EPIX"
+            - "GENERIC"
             - "STATS_FROM_DB"
-        db-module: "ePix100_M15"
         start-date: "2019-01-01"
-        end-date: "2019-05-12"
+        end-date: "NOW"
+        nconstants: 20
+        dclass: "ePix100"
+        nMemToShow: 1
+        modules:
+            - "ePix100_M15"
+            - "ePix100_M18"
         constants:
             - "Noise"
             - "Offset"
@@ -113,18 +203,322 @@ MID:
             - 1
             - 50
         photon-energy: 9.2
+        separate-plot:
+            - "integration_time"
+        parameter-names:
+            - "bias_voltage"
+            - "integration_time"
+            - "temperature"
+            - "in_vacuum"
+        spShape:
+            - 354
+            - 96
+        x-labels:
+            - "Sensor Temperature"
+            - "Integration Time"
+        sp-name: "ASICs id"
+        use-existing: "''"
+        out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
+        cal-db-timeout: 180000
+        cal-db-interface: "tcp://max-exfl016:8015#8025"
+
+
+FXE:
+    LPD1M1:
+        det-type:
+            - "GENERIC"
+            - "STATS_FROM_DB2"
+        modules: 
+            - "LPD1M1"
+        start-date: "2019-01-01"
+        end-date: "NOW"
+        nconstants: 20
+        constants:
+            - "Noise"
+            - "SlopesFF"
+            - "SlopesCI"
+            - "Offset"
+        dclass: "LPD"
+        submodules: "0-16"
+        bias-voltage:
+            - 250
+            - 500
+        memory-cells:
+            - 1
+            - 128
+            - 512
+        photon-energy: 9.2
+        separate-plot:
+            - "gain_setting"
+        parameter-names:
+            - "bias_voltage"
+            - "memory_cells"
+        spShape:
+            - 64
+            - 64
+        gain-titles:
+            - "High gain"
+            - "Medium gain"
+            - "Low gain"
+        x-labels:
+            - "Memory cells"
+        sp-name: "ASICs id"
+        nMemToShow: 32
+        use-existing: "''"
+        out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
+        cal-db-timeout: 180000
+        cal-db-interface: "tcp://max-exfl016:8015#8025"
+
+    JUNGFRAU:
+        det-type:
+            - "GENERIC"
+            - "STATS_FROM_DB"
+        start-date: "2019-01-01"
+        end-date: "NOW"
+        nconstants: 20
+        constants:
+            - "Noise"
+            - "Offset"
+        dclass: "jungfrau"
+        modules:
+            - "Jungfrau_M233"
+            - "Jungfrau_M125"
+            - "Jungfrau_M260"
+        bias-voltage:
+            - 90
+            - 180
+        memory-cells:
+            - 1
+        pixels-x:
+            - 1024
+        pixels-y:
+            - 512
+            - 1024
+        temperature:
+            - 291
+        integration-time:
+            - 50
+            - 250
+        gain-setting:
+            - 0
+        separate-plot:
+            - "integration_time"
+            - "gain_setting"
+        parameter-names:
+            - "bias_voltage"
+            - "integration_time"
+            - "pixels_x"
+            - "pixels_y"
+            - "gain_setting"
+            - "temperature"
+            - "memory_cells"
+        spShape:
+            - 256
+            - 64
+        gain-titles:
+            - "High gain"
+            - "Medium gain"
+            - "Low gain"
+        nMemToShow: 1
+        x-labels:
+            - "Sensor Temperature"
+            - "Integration Time"
+        sp-name: "Supercolumn 256*64"
+        photon-energy: 9.2
+        use-existing: "''"
+        out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
+        cal-db-timeout: 180000
+        cal-db-interface: "tcp://max-exfl016:8015#8025"
+
+DETLAB:
+    FASTCCD:
+        det-type:
+            - "GENERIC"
+            - "STATS_FROM_DB"
+        start-date: "2019-01-01"
+        end-date: "NOW"
+        nconstants: 20
+        constants:
+            - "Noise"
+            - "Offset"
+        dclass: "CCD"
+        nMemToShow: 1
+        modules: 
+            - "fastCCD1"
+        bias-voltage:
+            - 79
+        temperature:
+            - 235
+            - 216
+            - 245
+        integration-time:
+            - 1
+            - 50
+        gain-setting:
+            - 0
+            - 1
+            - 2
+            - 8
+        pixels-x:
+            - 1934
+        pixels-y:
+            - 960
+        separate-plot:
+            - "integration_time"
+            - "gain_setting"
+            - "temperature"
+        parameter-names:
+            - "bias_voltage"
+            - "integration_time"
+            - "pixels_x"
+            - "pixels_y"
+            - "gain_setting"
+            - "temperature"
+        spShape:
+            - 967
+            - 10
+        gain-titles:
+            - "gain 0x"
+            - "gain 1x"
+            - "gain 2x"
+            - "gain 8x"
+        x-labels:
+            - "Sensor Temperature"
+            - "Integration Time"
+        sp-name: "Supercolumn 967*10"
+        photon-energy: 9.2
+        use-existing: "''"
+        out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
+        cal-db-timeout: 180000
+        cal-db-interface: "tcp://max-exfl016:8015#8025"
+
+
+SCS:
+    FASTCCD:
+        det-type:
+            - "GENERIC"
+            - "STATS_FROM_DB"
+        start-date: "2019-01-01"
+        end-date: "NOW"
+        nconstants: 20
+        constants:
+            - "Noise"
+            - "Offset"
+        dclass: "CCD"
+        nMemToShow: 1
+        modules: 
+            - "fastCCD1"
+        bias-voltage:
+            - 79
+        temperature:
+            - 235
+            - 216
+            - 245
+        integration-time:
+            - 1
+            - 50
+        gain-setting:
+            - 0
+            - 1
+            - 2
+            - 8
+        pixels-x:
+            - 1934
+        pixels-y:
+            - 960
+        separate-plot:
+            - "integration_time"
+            - "gain_setting"
+            - "temperature"
+        parameter-names:
+            - "bias_voltage"
+            - "integration_time"
+            - "pixels_x"
+            - "pixels_y"
+            - "gain_setting"
+            - "temperature"
+        spShape:
+            - 967
+            - 10
+        gain-titles:
+            - "gain 0x"
+            - "gain 1x"
+            - "gain 2x"
+            - "gain 8x"
+        x-labels:
+            - "Sensor Temperature"
+            - "Integration Time"
+        sp-name: "Supercolumn 967*10"
+        photon-energy: 9.2
+        use-existing: "''"
+        out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
+        cal-db-timeout: 180000
+        cal-db-interface: "tcp://max-exfl016:8015#8025"
+
+SQS:
+    PNCCD:
+        det-type:
+            - "GENERIC"
+            - "STATS_FROM_DB"
+        start-date: "2019-01-01"
+        end-date: "NOW"
+        nconstants: 20
+        constants:
+            - "Noise"
+            - "Offset"
+        dclass: "CCD"
+        nMemToShow: 1
+        modules: 
+            - "PnCCD1"
+        bias-voltage:
+            - 300
+        temperature:
+            - 235
+        integration-time:
+            - 1
+            - 50
+        gain-setting:
+            - 0
+        pixels-x:
+            - 1024
+        pixels-y:
+            - 1024
+        separate-plot:
+            - "integration_time"
+            - "temperature"
+        parameter-names:
+            - "bias_voltage"
+            - "integration_time"
+            - "pixels_x"
+            - "pixels_y"
+            - "gain_setting"
+            - "temperature"
+        spShape:
+            - 256
+            - 256
+        x-labels:
+            - "Sensor Temperature"
+            - "Integration Time"
+        sp-name: "ASICs id"
+        photon-energy: 9.2
         use-existing: "''"
         out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
         cal-db-timeout: 180000
         cal-db-interface: "tcp://max-exfl016:8015#8025"
 
-    EPIX02:
+HED:
+    EPIX:
         det-type:
-            - "EPIX"
+            - "GENERIC"
             - "STATS_FROM_DB"
-        db-module: "ePix100_M18"
         start-date: "2019-01-01"
-        end-date: "2019-05-12"
+        end-date: "NOW"
+        nconstants: 20
+        dclass: "ePix100"
+        nMemToShow: 1
+        modules:
+            - "ePix100_M16"
+            - "ePix100_M17"
         constants:
             - "Noise"
             - "Offset"
@@ -136,35 +530,83 @@ MID:
             - 1
             - 50
         photon-energy: 9.2
+        separate-plot:
+            - "integration_time"
+        parameter-names:
+            - "bias_voltage"
+            - "integration_time"
+            - "temperature"
+            - "in_vacuum"
+        spShape:
+            - 354
+            - 96
+        x-labels:
+            - "Sensor Temperature"
+            - "Integration Time"
+        sp-name: "superpixel id"
         use-existing: "''"
         out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
         cal-db-timeout: 180000
         cal-db-interface: "tcp://max-exfl016:8015#8025"
 
-FXE:
-    LPD1M1:
+    JUNGFRAU:
         det-type:
-            - "LPD"
+            - "GENERIC"
             - "STATS_FROM_DB"
-        db-module: "LPD1M1"
-        start-date: "2018-01-01"
-        end-date: "2018-12-12"
+        start-date: "2019-01-01"
+        end-date: "NOW"
+        nconstants: 20
         constants:
             - "Noise"
-            - "SlopesFF"
-            - "SlopesCI"
             - "Offset"
-        modules: "0-16"
-        bias-voltages:
-            - 250
-            - 500
-        mem-cells:
+        dclass: "jungfrau"
+        nMemToShow: 1
+        modules:
+            - "Jungfrau_M039"
+            - "Jungfrau_M266"
+        bias-voltage:
+            - 90
+            - 180
+        memory-cells:
             - 1
-            - 128
-            - 256
+        pixels-x:
+            - 1024
+        pixels-y:
             - 512
+            - 1024
+        temperature:
+            - 291
+        integration-time:
+            - 50
+            - 250
+        gain-setting:
+            - 0
+        separate-plot:
+            - "integration_time"
+            - "gain_setting"
+        parameter-names:
+            - "bias_voltage"
+            - "integration_time"
+            - "pixels_x"
+            - "pixels_y"
+            - "gain_setting"
+            - "temperature"
+            - "memory_cells"
+        spShape:
+            - 256
+            - 64
+        gain-titles:
+            - "High gain"
+            - "Medium gain"
+            - "Low gain"
+        x-labels:
+            - "Sensor Temperature"
+            - "Integration Time"
+        sp-name: "Supercolumn 256*64"
         photon-energy: 9.2
         use-existing: "''"
         out-folder: "/gpfs/exfel/data/scratch/xcal/report_service/tmp/{instrument}/{detector}/"
         cal-db-timeout: 180000
         cal-db-interface: "tcp://max-exfl016:8015#8025"
+
+
diff --git a/xfel_calibrate/notebooks.py b/xfel_calibrate/notebooks.py
index 6baf79bd43d40cd5cafe3bb4763779f4a892b073..c5375bc0e052aa4d304dafc873ce2eb060b2bdda 100644
--- a/xfel_calibrate/notebooks.py
+++ b/xfel_calibrate/notebooks.py
@@ -113,6 +113,13 @@ notebooks = {
                                                 "default concurrency": None,
                                                 "cluster cores": 1},
                                },
+                       "STATS_FROM_DB2":   {
+                               "notebook": "notebooks/generic/PlotFromCalDB_NBC.ipynb",
+			       "dep_notebooks": ["notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb"],
+                               "concurrency": {"parameter": "submodules",
+                                               "default concurrency": None,
+                                               "cluster cores": 1},
+                               },
                        },
             "TUTORIAL": {
                        "TEST": {