diff --git a/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb b/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb
index a1e0069c8afa24a682f42a47ae6312b6987bc0fb..8f98c1dae60d76c7bda930cc399d5133e22a77ee 100644
--- a/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb
+++ b/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb
@@ -2,16 +2,17 @@
  "cells": [
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "tags": []
+   },
    "source": [
-    "Updated version of the ePix100 Dark Characterization notebook:\n",
-    "\n",
-    "- Generates the bad pixel map.\n",
-    "- Added badpixel_threshold_sigma input variable: Number of standard deviations considered for bad pixel classification.\n",
-    "- Sensor size is read from hdf5 file instead of being manually input.\n",
-    "- Detector temperature can be read from hdf5 file instead of having a fixed value only.\n",
-    "- Removed the xcal.HistogramCalculator() function, which calculation output was not in use.\n",
-    "- Set db_module to \"\" by default in the first cell (TODO note of previous notebook version)."
+    "# ePix100 Dark Characterization\n",
+    "\n",
+    "Author: European XFEL Detector Group, Version: 2.0\n",
+    "\n",
+    "The following notebook provides dark image analysis and calibration constants of the ePix100 detector.\n",
+    "\n",
+    "Dark characterization evaluates offset and noise of the detector and gives information about bad pixels. Resulting maps are saved as .h5 files for a latter use and injected to calibration DB."
    ]
   },
   {
@@ -20,14 +21,14 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "in_folder = '/gpfs/exfel/exp/HED/202030/p900136/raw' # input folder, required\n",
+    "in_folder = '/gpfs/exfel/exp/HED/202230/p900247/raw' # input folder, required\n",
     "out_folder = '' # output folder, required\n",
     "sequence = 0 # sequence file to use\n",
-    "run = 182 # which run to read data from, required\n",
+    "run = 45 # which run to read data from, required\n",
     "\n",
     "# Parameters for accessing the raw data.\n",
-    "karabo_id = \"HED_IA1_EPX100-2\" # karabo karabo_id\n",
-    "karabo_da = [\"EPIX02\"]  # data aggregators\n",
+    "karabo_id = \"HED_IA1_EPX100-1\" # karabo karabo_id\n",
+    "karabo_da = [\"EPIX01\"]  # data aggregators\n",
     "receiver_template = \"RECEIVER\" # detector receiver template for accessing raw data files\n",
     "path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data\n",
     "instrument_source_template = '{}/DET/{}:daqOutput' # instrument detector data source in h5files\n",
@@ -39,9 +40,12 @@
     "db_output = False # Output constants to the calibration database\n",
     "local_output = True # output constants locally\n",
     "\n",
-    "badpixel_threshold_sigma = 5.  # bad pixels defined by values outside n times this std from median\n",
-    "number_dark_frames = 0 # number of images to be used, if set to 0 all available images are used\n",
+    "# Conditions used for injected calibration constants.\n",
+    "bias_voltage = 200 # bias voltage\n",
+    "in_vacuum = False # detector operated in vacuum\n",
+    "fix_temperature = 0. # Fixed temperature in Kelvin. Set to 0 to read from .h5 file\n",
     "temp_limits = 5 # limit for parameter Operational temperature\n",
+    "badpixel_threshold_sigma = 5.  # bad pixels defined by values outside n times this std from median\n",
     "\n",
     "# Parameters used during selecting raw data trains.\n",
     "min_trains = 1 # Minimum number of trains that should be available to process dark constants. Default 1.\n",
@@ -69,7 +73,9 @@
     "\n",
     "import XFELDetAna.xfelprofiler as xprof\n",
     "from XFELDetAna import xfelpyanatools as xana\n",
+    "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n",
     "from XFELDetAna.plotting.util import prettyPlotting\n",
+    "from cal_tools.enums import BadPixels\n",
     "from cal_tools.tools import (\n",
     "    get_dir_creation_date,\n",
     "    get_pdu_from_db,\n",
@@ -108,12 +114,11 @@
     "# Read report path and create file location tuple to add with the injection\n",
     "proposal = list(filter(None, in_folder.strip('/').split('/')))[-2]\n",
     "file_loc = f'proposal:{proposal} runs:{run}'\n",
-    "pixels_x = 708\n",
-    "pixels_y = 768\n",
     "report = get_report(out_folder)\n",
     "\n",
     "ped_dir = os.path.join(in_folder, f\"r{run:04d}\")\n",
     "fp_name = path_template.format(run, karabo_da[0]).format(sequence)\n",
+    "filename = os.path.join(ped_dir, fp_name)\n",
     "run_dir = RunDirectory(ped_dir)\n",
     "\n",
     "print(f\"Run number: {run}\")\n",
@@ -130,10 +135,16 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "pixel_data = (instrument_src, \"data.image.pixels\")\n",
+    "# Read sensor size\n",
+    "sensor_size = np.array(run_dir.get_array( \n",
+    "    instrument_src,\n",
+    "    \"data.image.dims\")[0,:2]) # (x,y)\n",
+    "\n",
+    "# Path to pixel ADC values\n",
+    "pixel_data_dir = (instrument_src, \"data.image.pixels\")\n",
     "\n",
     "# Specifies total number of images to proceed\n",
-    "n_trains = run_dir.get_data_counts(*pixel_data).shape[0]\n",
+    "n_trains = run_dir.get_data_counts(*pixel_data_dir).shape[0]\n",
     "\n",
     "# Modify n_trains to process based on given maximum\n",
     "# and minimun number of trains.\n",
@@ -145,25 +156,26 @@
     "        f\"Less than {min_trains} trains are available in RAW data.\"\n",
     "         \" Not enough data to process darks.\")\n",
     "\n",
-    "print(f\"Number of dark images to analyze: {n_trains}.\")\n",
+    "print(f\"Number of dark images to analyze: {n_trains}\")\n",
     "\n",
     "integration_time = int(run_dir.get_array(\n",
     "    f\"{karabo_id}/DET/CONTROL\",\n",
     "    \"expTime.value\")[0])\n",
-    "temperature = np.mean(run_dir.get_array(\n",
-    "    instrument_src,\n",
-    "    \"data.backTemp\").values) / 100.\n",
     "\n",
-    "if fix_temperature != 0:\n",
+    "if fix_temperature:\n",
     "    temperature_k = fix_temperature\n",
+    "    temperature = fix_temperature - 273.15\n",
     "    print(\"Temperature is fixed!\")\n",
     "else:\n",
+    "    temperature = np.mean(run_dir.get_array(\n",
+    "        instrument_src,\n",
+    "        \"data.backTemp\").values) / 100.\n",
     "    temperature_k = temperature + 273.15\n",
     "\n",
     "print(f\"Bias voltage is {bias_voltage} V\")\n",
-    "print(f\"Detector integration time is set to {integration_time}\")\n",
-    "print(f\"Mean temperature was {temperature:0.2f} °C / {temperature_k:0.2f} K\")\n",
-    "print(f\"Operated in vacuum: {in_vacuum} \")"
+    "print(f\"Detector integration time is set to {integration_time} \\u03BCs\")\n",
+    "print(f\"Mean temperature was {temperature:0.1f}°C / {temperature_k:0.1f} K\")\n",
+    "print(f\"Operated in vacuum: {in_vacuum}\")"
    ]
   },
   {
@@ -174,14 +186,28 @@
    },
    "outputs": [],
    "source": [
+    "# Calculate noise and offset per pixel and global average, std and median\n",
     "data_dc = run_dir.select(\n",
-    "    *pixel_data, require_all=True).select_trains(np.s_[:n_trains])\n",
+    "    *pixel_data_dir, require_all=True).select_trains(np.s_[:n_trains])\n",
     "print(f\"Reading data from: {data_dc.files}\\n\")\n",
     "\n",
-    "data = data_dc[pixel_data].ndarray()\n",
+    "data = data_dc[pixel_data_dir].ndarray()\n",
     "\n",
     "noise_data = np.std(data, axis=0)\n",
-    "offset_data = np.mean(data, axis=0)"
+    "offset_data = np.mean(data, axis=0)\n",
+    "\n",
+    "noise_mean = np.mean(noise_data)\n",
+    "noise_sigma = np.std(noise_data)\n",
+    "noise_median = np.median(noise_data)\n",
+    "noise_min = np.min(noise_data)\n",
+    "noise_max = np.max(noise_data)\n",
+    "\n",
+    "\n",
+    "offset_mean = np.mean(offset_data)\n",
+    "offset_sigma = np.std(offset_data)\n",
+    "offset_median = np.median(offset_data)\n",
+    "offset_min = np.min(offset_data)\n",
+    "offset_max = np.max(offset_data)"
    ]
   },
   {
@@ -190,94 +216,111 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "# Create and fill offset and noise maps\n",
     "constant_maps = {}\n",
     "constant_maps['Offset'] = offset_data[..., np.newaxis]\n",
-    "constant_maps['Noise'] = noise_data[..., np.newaxis]\n",
-    "print(\"Initial constant maps are created\")"
+    "constant_maps['Noise'] = noise_data[..., np.newaxis]"
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": null,
+   "cell_type": "markdown",
    "metadata": {},
-   "outputs": [],
    "source": [
-    "noise_mean = np.mean(constant_maps['Noise'].data.flatten())\n",
-    "noise_sigma = np.std(constant_maps['Noise'].data.flatten())\n",
-    "noise_median = np.median(constant_maps['Noise'].data.flatten())\n",
-    "\n",
-    "offset_mean = np.mean(constant_maps['Offset'].data.flatten())\n",
-    "offset_sigma = np.std(constant_maps['Offset'].data.flatten())\n",
-    "offset_median = np.median(constant_maps['Offset'].data.flatten())"
+    "## Offset ###"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "87b73246-9080-4303-adbd-d8708886e775",
    "metadata": {},
    "outputs": [],
    "source": [
     "#************** OFFSET HEAT MAP **************#\n",
-    "plt.figure(1)\n",
-    "fig1 = xana.heatmapPlot(constant_maps['Offset'][:, :, 0].data,\n",
-    "                       lut_label='[ADU]',\n",
-    "                       x_label = 'Column',\n",
-    "                       y_label = 'Row',\n",
-    "                       x_range=(0, sensorSize[1]),\n",
-    "                       y_range=(0, sensorSize[0]), \n",
-    "                       vmin=max(0,offset_median - badpixel_threshold_sigma*offset_sigma), \n",
-    "                       vmax=min(np.power(2,14)-1,offset_median + badpixel_threshold_sigma*offset_sigma))\n",
-    "\n",
-    "fig1.suptitle('Offset Map',x=.48,y=.9,fontsize=16)\n",
-    "fig1.set_size_inches(h=15,w=15)\n",
+    "fig = xana.heatmapPlot(\n",
+    "    constant_maps['Offset'][:, :, 0],\n",
+    "    lut_label='[ADU]',\n",
+    "    x_label = 'Column',\n",
+    "    y_label = 'Row',\n",
+    "    x_range = (0, sensor_size[0]),\n",
+    "    y_range = (0, sensor_size[1]), \n",
+    "    vmin = max(0, offset_median - badpixel_threshold_sigma*offset_sigma), \n",
+    "    vmax = min(np.power(2,14)-1, offset_median + badpixel_threshold_sigma*offset_sigma)\n",
+    ")\n",
+    "fig.suptitle('Offset Map', x=.48, y=.9, fontsize=16)\n",
+    "fig.set_size_inches(h=15, w=15)\n",
     "\n",
     "#************** OFFSET HISTOGRAM **************#\n",
     "binwidth = offset_sigma/100\n",
-    "ho, co = np.histogram(constant_maps['Offset'].data.flatten(),\n",
-    "                      bins=np.arange((min(constant_maps['Offset'].data.flatten())),\n",
-    "                                 max(constant_maps['Offset'].data.flatten()) + binwidth,\n",
-    "                                 binwidth))\n",
+    "ho, co = np.histogram(\n",
+    "    constant_maps['Offset'].flatten(),\n",
+    "    bins = np.arange(offset_min, offset_max, binwidth)\n",
+    ")\n",
     "do = {'x': co[:-1],\n",
     "      'y': ho,\n",
     "      'y_err': np.sqrt(ho[:]),\n",
     "      'drawstyle': 'bars',\n",
     "      'color': 'cornflowerblue'}\n",
     "\n",
-    "fig2 = xana.simplePlot(do, \n",
-    "                      aspect=1.5,\n",
-    "                      x_label='Offset [ADU]',\n",
-    "                      y_label='Counts',\n",
-    "                      x_range=(max(0,offset_median - badpixel_threshold_sigma*offset_sigma), \n",
-    "                               min(np.power(2,14)-1,offset_median + badpixel_threshold_sigma*offset_sigma)),\n",
-    "                      y_range=(0,max(ho)*1.1),\n",
-    "                      y_log=True)\n",
-    "\n",
-    "fig2.suptitle('Offset Distribution',x=.5,y=.92,fontsize=16)\n",
-    "\n",
-    "stats_str = 'mean   : ' + \"{:.2f}\".format(np.round(offset_mean,2)) \\\n",
-    "          + '\\nstd       : ' + \"{:.2f}\".format(np.round(offset_sigma,2)) \\\n",
-    "          + '\\nmedian: ' + \"{:.2f}\".format(np.round(offset_median,2)) \\\n",
-    "          + '\\nmin:      ' + \"{:.2f}\".format(np.min(constant_maps['Offset'].data.flatten())) \\\n",
-    "          + '\\nmax:     ' + \"{:.2f}\".format(np.max(constant_maps['Offset'].data.flatten()))\n",
-    "fig2.text(s=stats_str,x=.7,y=.7,fontsize=14,bbox=dict(facecolor='yellow', edgecolor='black', alpha=.1));\n",
-    "\n",
+    "fig = xana.simplePlot(\n",
+    "    do, \n",
+    "    aspect = 1.5,\n",
+    "    x_label = 'Offset [ADU]',\n",
+    "    y_label = 'Counts',\n",
+    "    x_range = (0, np.power(2,14)-1),\n",
+    "    y_range = (0, max(ho)*1.1),\n",
+    "    y_log = True\n",
+    ")\n",
+    "fig.suptitle('Offset Distribution', x=.5,y =.92, fontsize=16)\n",
+    "\n",
+    "stats_str = (\n",
+    "    f'mean: {np.round(offset_mean,2)}\\n'\n",
+    "    f'std : {np.round(offset_sigma,2)}\\n'\n",
+    "    f'median: {np.round(offset_median,2)}\\n'\n",
+    "    f'min: {np.round(offset_min,2)}\\n'\n",
+    "    f'max: {np.round(offset_max,2)}'\n",
+    ")\n",
+    "fig.text(\n",
+    "    s = stats_str,\n",
+    "    x = .7,\n",
+    "    y = .7,\n",
+    "    fontsize = 14,\n",
+    "    bbox = dict(facecolor='yellow', edgecolor='black', alpha=.1));"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "tags": []
+   },
+   "source": [
+    "## Noise ###"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
     "#************** NOISE HEAT MAP **************#\n",
-    "fig3 = xana.heatmapPlot(constant_maps['Noise'][:, :, 0],\n",
-    "                       x_label='Columns', y_label='Rows',\n",
-    "                       lut_label='Noise [ADU]',\n",
-    "                       x_range=(0, sensorSize[1]),\n",
-    "                       y_range=(0, sensorSize[0]),\n",
-    "                       vmin=max(0,noise_median - badpixel_threshold_sigma*noise_sigma), \n",
-    "                       vmax=noise_median + badpixel_threshold_sigma*noise_sigma)\n",
-    "fig3.suptitle('Noise Map',x=.48,y=.9,fontsize=16)\n",
-    "fig3.set_size_inches(h=15,w=15)\n",
+    "fig = xana.heatmapPlot(\n",
+    "    constant_maps['Noise'][:, :, 0],\n",
+    "    lut_label = '[ADU]',\n",
+    "    x_label = 'Column', \n",
+    "    y_label = 'Row',\n",
+    "    x_range = (0, sensor_size[0]),\n",
+    "    y_range = (0, sensor_size[1]),\n",
+    "    vmin = max(0, noise_median - badpixel_threshold_sigma*noise_sigma), \n",
+    "    vmax = noise_median + badpixel_threshold_sigma*noise_sigma\n",
+    ")\n",
+    "fig.suptitle('Noise Map', x=.5, y=.9, fontsize=16)\n",
+    "fig.set_size_inches(h=15, w=15)\n",
     "\n",
     "#************** NOISE HISTOGRAM **************#\n",
     "binwidth = noise_sigma/100\n",
-    "hn, cn = np.histogram(constant_maps['Noise'].data.flatten(),\n",
-    "                      bins=np.arange((min(constant_maps['Noise'].data.flatten())),\n",
-    "                                 max(constant_maps['Noise'].data.flatten()) + binwidth,\n",
+    "hn, cn = np.histogram(constant_maps['Noise'].flatten(),\n",
+    "                      bins=np.arange((min(constant_maps['Noise'].flatten())),\n",
+    "                                 max(constant_maps['Noise'].flatten()) + binwidth,\n",
     "                                 binwidth))\n",
     "dn = {'x': cn[:-1],\n",
     "      'y': hn,\n",
@@ -285,33 +328,40 @@
     "      'drawstyle': 'bars',\n",
     "      'color': 'cornflowerblue'}\n",
     "\n",
-    "fig4 = xana.simplePlot(dn,\n",
-    "                      aspect=1.5,\n",
-    "                      x_range=(max(0,noise_median - badpixel_threshold_sigma*noise_sigma), \n",
-    "                               noise_median + badpixel_threshold_sigma*noise_sigma),\n",
-    "                      y_range=(0,max(hn)*1.1),\n",
-    "                      x_label='Noise [ADU]',\n",
-    "                      y_label='Counts',\n",
-    "                      y_log=True)\n",
-    "\n",
-    "fig4.suptitle('Noise Distribution',x=.5,y=.92,fontsize=16);\n",
-    "\n",
-    "stats_str = 'mean   : ' + \"{:.2f}\".format(np.round(noise_mean,2)) \\\n",
-    "          + '\\nstd       : ' + \"{:.2f}\".format(np.round(noise_sigma,2)) \\\n",
-    "          + '\\nmedian: ' + \"{:.2f}\".format(np.round(noise_median,2)) \\\n",
-    "          + '\\nmin      : ' + \"{:.2f}\".format(np.min(constant_maps['Noise'].data.flatten())) \\\n",
-    "          + '\\nmax     : ' + \"{:.2f}\".format(np.max(constant_maps['Noise'].data.flatten()))\n",
-    "fig4.text(s=stats_str,x=.72,y=.7,fontsize=14, bbox=dict(facecolor='yellow', edgecolor='black', alpha=.1));"
+    "fig = xana.simplePlot(\n",
+    "    dn,\n",
+    "    aspect = 1.5,\n",
+    "    x_label = 'Noise [ADU]',\n",
+    "    y_label = 'Counts',\n",
+    "    x_range = (max(0, noise_median - badpixel_threshold_sigma*noise_sigma), \n",
+    "               noise_median + badpixel_threshold_sigma*noise_sigma),\n",
+    "    y_range = (0, max(hn)*1.1),\n",
+    "    y_log = True\n",
+    ")\n",
+    "fig.suptitle('Noise Distribution',x=.5,y=.92,fontsize=16);\n",
+    "\n",
+    "stats_str = (\n",
+    "    f'mean: {np.round(noise_mean,2)}\\n'\n",
+    "    f'std: {np.round(noise_sigma,2)}\\n'\n",
+    "    f'median: {np.round(noise_median,2)}\\n'\n",
+    "    f'min: {np.round(noise_min,2)}\\n'\n",
+    "    f'max: {np.round(noise_max,2)}'\n",
+    ")\n",
+    "fig.text(\n",
+    "    s = stats_str,\n",
+    "    x = .7,\n",
+    "    y = .7,\n",
+    "    fontsize = 14,\n",
+    "    bbox = dict(facecolor='yellow', edgecolor='black', alpha=.1));"
    ]
   },
   {
    "cell_type": "markdown",
-   "id": "02702ec6-0dbc-4cbf-9421-7cef2a6290c4",
    "metadata": {},
    "source": [
-    "## Bad Pixel Map ###\n",
+    "## Bad Pixels Map ###\n",
     "\n",
-    "The bad pixel map is deduced by comparing offset and noise of each pixel ($v_i$) against its median value:\n",
+    "The bad pixel map is deduced by comparing offset and noise of each pixel ($v_i$) against the median value of the respective maps ($v_k$):\n",
     "\n",
     "$$ \n",
     "v_i > \\mathrm{median}(v_{k}) + n \\sigma_{v_{k}}\n",
@@ -327,12 +377,18 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "0edad7cd-e719-4274-a1f0-9d0ed0937ef2",
    "metadata": {},
    "outputs": [],
    "source": [
     "def print_bp_entry(bp):\n",
-    "    print(\"{:<30s} {:032b}\".format(bp.name, bp.value))\n",
+    "    '''\n",
+    "    Prints bad pixels bit encoding.\n",
+    "    \n",
+    "    Parameters\n",
+    "    ----------\n",
+    "    bp : enum 'BadPixels'\n",
+    "    '''\n",
+    "    print('{:<30s} {:032b}'.format(bp.name, bp.value))\n",
     "\n",
     "print_bp_entry(BadPixels.OFFSET_OUT_OF_THRESHOLD)\n",
     "print_bp_entry(BadPixels.NOISE_OUT_OF_THRESHOLD)\n",
@@ -342,15 +398,29 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "b71b82c2-206b-4862-a134-8ae3cc065780",
    "metadata": {},
    "outputs": [],
    "source": [
-    "def eval_bpidx(d):\n",
-    "\n",
-    "    mdn = np.nanmedian(d, axis=(0, 1))\n",
-    "    std = np.nanstd(d, axis=(0, 1))  \n",
-    "    idx = (d > mdn + badpixel_threshold_sigma*std) | (d < mdn - badpixel_threshold_sigma*std)\n",
+    "def eval_bpidx(const_map, n_sigma):\n",
+    "    '''\n",
+    "    Evaluates bad pixels by comparing offset and noise of each\n",
+    "    pixel against the median value of the respective maps.\n",
+    "    \n",
+    "    Returns boolean array\n",
+    "    \n",
+    "    Parameters\n",
+    "    ----------\n",
+    "    const_map : ndarray\n",
+    "                Offset or noise constant map to input.\n",
+    "    n_sigma : float\n",
+    "              Standard deviation multiplicity interval outside\n",
+    "              which bad pixels are defined.\n",
+    "    '''\n",
+    "    \n",
+    "    mdn = np.nanmedian(const_map)\n",
+    "    std = np.nanstd(const_map)  \n",
+    "    idx = ( (const_map > mdn + n_sigma*std)\n",
+    "          | (const_map < mdn - n_sigma*std) )\n",
     "\n",
     "    return idx"
    ]
@@ -358,23 +428,44 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "f23ae7ca-cf5b-457c-9457-57e38f12a484",
-   "metadata": {},
+   "metadata": {
+    "tags": []
+   },
    "outputs": [],
    "source": [
+    "# Add BadPixels to constant_maps\n",
     "constant_maps['BadPixels'] = np.zeros(constant_maps['Offset'].shape, np.uint32)\n",
     "\n",
-    "constant_maps['BadPixels'][eval_bpidx(constant_maps['Offset'])] = BadPixels.OFFSET_OUT_OF_THRESHOLD.value\n",
-    "constant_maps['BadPixels'][eval_bpidx(constant_maps['Noise'])] = BadPixels.NOISE_OUT_OF_THRESHOLD.value\n",
-    "constant_maps['BadPixels'][~np.isfinite(constant_maps['Offset'])] = BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n",
+    "# Noise related bad pixels\n",
+    "constant_maps['BadPixels'][eval_bpidx(constant_maps['Noise'], badpixel_threshold_sigma)] = BadPixels.NOISE_OUT_OF_THRESHOLD.value\n",
     "constant_maps['BadPixels'][~np.isfinite(constant_maps['Noise'])] = BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n",
     "\n",
-    "#************** BAD PIXLES HEAT MAP **************#\n",
-    "fig5 = xana.heatmapPlot(constant_maps['BadPixels'][:, :, 0],\n",
-    "                       x_label='Columns', y_label='Rows',\n",
-    "                       lut_label='Noise (ADU)',\n",
-    "                       x_range=(0, pixels_y),\n",
-    "                       y_range=(0, pixels_x), vmax=2 * np.mean(constant_maps['Noise']))"
+    "# Offset related bad pixels\n",
+    "constant_maps['BadPixels'][eval_bpidx(constant_maps['Offset'], badpixel_threshold_sigma)] = BadPixels.OFFSET_OUT_OF_THRESHOLD.value\n",
+    "constant_maps['BadPixels'][~np.isfinite(constant_maps['Offset'])] = BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n",
+    "\n",
+    "num_bad_pixels = np.sum(constant_maps['BadPixels']!=0)\n",
+    "\n",
+    "print('Number of Bad Pixels: ' + str(num_bad_pixels) + ' (' + str(np.round(100*num_bad_pixels/(sensor_size[0]*sensor_size[1]),2)) + '%)')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#************** BAD PIXELS HEAT MAP **************#\n",
+    "fig = xana.heatmapPlot(\n",
+    "    np.log2(constant_maps['BadPixels'][:, :, 0]),\n",
+    "    lut_label='Bad pixel bit assinged',\n",
+    "    x_label = 'Column',\n",
+    "    y_label = 'Row',\n",
+    "    x_range = (0, sensor_size[0]),\n",
+    "    y_range = (0, sensor_size[1])\n",
+    ")\n",
+    "fig.suptitle('Bad Pixels Map', x=.5, y=.9, fontsize=16)\n",
+    "fig.set_size_inches(h=15, w=15)"
    ]
   },
   {
@@ -384,52 +475,74 @@
    "outputs": [],
    "source": [
     "# Save constants to DB\n",
-    "dclass=\"ePix100\"\n",
     "md = None\n",
     "\n",
     "for const_name in constant_maps.keys():\n",
-    "    det = getattr(Constants, dclass)\n",
-    "    const = getattr(det, const_name)()\n",
+    "    const = getattr(Constants.ePix100, const_name)()\n",
     "    const.data = constant_maps[const_name].data\n",
     "\n",
-    "    # set the operating condition\n",
-    "    condition =  getattr(Conditions.Dark, dclass)(bias_voltage=bias_voltage,\n",
-    "                                                  integration_time=integration_time,\n",
-    "                                                  temperature=temperature_k,\n",
-    "                                                  in_vacuum=in_vacuum)\n",
+    "    # Set the operating condition\n",
+    "    condition = Conditions.Dark.ePix100(\n",
+    "        bias_voltage = bias_voltage,\n",
+    "        integration_time = integration_time,\n",
+    "        temperature = temperature_k,\n",
+    "        in_vacuum = in_vacuum)\n",
+    " \n",
     "    for parm in condition.parameters:\n",
     "        if parm.name == \"Sensor Temperature\":\n",
     "            parm.lower_deviation = temp_limits\n",
     "            parm.upper_deviation = temp_limits\n",
     "\n",
-    "    db_module = get_pdu_from_db(karabo_id, karabo_da, const,\n",
-    "                                condition, cal_db_interface,\n",
-    "                                snapshot_at=creation_time)[0]\n",
+    "    # Get physical detector unit\n",
+    "    db_module = get_pdu_from_db(\n",
+    "        karabo_id = karabo_id,\n",
+    "        karabo_da = karabo_da,\n",
+    "        constant = const,\n",
+    "        condition = condition,\n",
+    "        cal_db_interface = cal_db_interface,\n",
+    "        snapshot_at=creation_time)[0]\n",
     "\n",
+    "    # Inject or save calibration constants\n",
     "    if db_output:\n",
-    "        md = send_to_db(db_module, karabo_id, const, condition,\n",
-    "                        file_loc=file_loc, report_path=report,\n",
-    "                        cal_db_interface=cal_db_interface,\n",
-    "                        creation_time=creation_time,\n",
-    "                        timeout=cal_db_timeout)\n",
+    "        md = send_to_db(\n",
+    "            db_module = db_module,\n",
+    "            karabo_id = karabo_id,\n",
+    "            constant = const,\n",
+    "            condition = condition,\n",
+    "            file_loc = file_loc,\n",
+    "            report_path = report,\n",
+    "            cal_db_interface = cal_db_interface,\n",
+    "            creation_time = creation_time,\n",
+    "            timeout = cal_db_timeout\n",
+    "        )\n",
     "    if local_output:\n",
-    "        md = save_const_to_h5(db_module, karabo_id, const, condition,\n",
-    "                              const.data, file_loc, report,\n",
-    "                              creation_time, out_folder)\n",
+    "        md = save_const_to_h5(\n",
+    "            db_module = db_module,\n",
+    "            karabo_id = karabo_id,\n",
+    "            constant = const,\n",
+    "            condition = condition,\n",
+    "            data = const.data,\n",
+    "            file_loc = file_loc,\n",
+    "            report = report,\n",
+    "            creation_time = creation_time,\n",
+    "            out_folder = out_folder\n",
+    "        )\n",
     "        print(f\"Calibration constant {const_name} is stored locally at {out_folder} \\n\")\n",
     "\n",
-    "print(\"Constants parameter conditions are:\\n\")\n",
-    "print(f\"• Bias voltage: {bias_voltage}\\n• Integration time: {integration_time}\\n\"\n",
-    "      f\"• Temperature: {temperature_k}\\n• In Vacuum: {in_vacuum}\\n\"\n",
-    "      f\"• Creation time: {md.calibration_constant_version.begin_at if md is not None else creation_time}\\n\")"
+    "print(\"Constants parameter conditions are:\\n\"\n",
+    "    f\"• Bias voltage: {bias_voltage}\\n\"\n",
+    "    f\"• Integration time: {integration_time}\\n\"\n",
+    "    f\"• Temperature: {temperature_k}\\n\"\n",
+    "    f\"• In Vacuum: {in_vacuum}\\n\"\n",
+    "    f\"• Creation time: {md.calibration_constant_version.begin_at if md is not None else creation_time}\\n\")"
    ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "cal_venv",
    "language": "python",
-   "name": "python3"
+   "name": "cal_venv"
   },
   "language_info": {
    "codemirror_mode": {
@@ -462,5 +575,5 @@
   }
  },
  "nbformat": 4,
- "nbformat_minor": 1
+ "nbformat_minor": 4
 }