diff --git a/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb b/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb index e817a84a2daa2a94643a12a282389b171f2751c1..71be49924ec70ea4c9786bc5a783037cd384c211 100644 --- a/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb +++ b/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb @@ -536,14 +536,14 @@ "outputs": [], "source": [ "fig = plt.figure(figsize=(10, 5))\n", - "ax0 = fig.add_subplot(111)\n", - "a = ax0.hist(hist_std.flatten(), bins=100, range=(0,100) )\n", - "ax0.plot([intensity_lim, intensity_lim], [0, np.nanmax(a[0])], linewidth=1.5, color='red' ) \n", - "ax0.set_xlabel('Histogram width [ADU]', fontsize=14)\n", - "ax0.set_ylabel('Number of histograms', fontsize=14)\n", - "ax0.set_title(f'{hist_std[hist_std<intensity_lim].shape[0]} histograms below threshold in {intensity_lim} ADU',\n", + "ax = fig.add_subplot(111)\n", + "a = ax.hist(hist_std.flatten(), bins=100, range=(0,100) )\n", + "ax.plot([intensity_lim, intensity_lim], [0, np.nanmax(a[0])], linewidth=1.5, color='red' ) \n", + "ax.set_xlabel('Histogram width [ADU]', fontsize=14)\n", + "ax.set_ylabel('Number of histograms', fontsize=14)\n", + "ax.set_title(f'{hist_std[hist_std<intensity_lim].shape[0]} histograms below threshold in {intensity_lim} ADU',\n", " fontsize=14, fontweight='bold')\n", - "ax0.grid()\n", + "ax.grid()\n", "plt.yscale('log')" ] }, @@ -634,7 +634,7 @@ "metadata": {}, "outputs": [], "source": [ - "def plot_error_band(key, x, ax0):\n", + "def plot_error_band(key, x, ax):\n", " \n", " cdata = np.copy(fit_result[key])\n", " cdata[fit_result['mask']>0] = np.nan\n", @@ -644,14 +644,14 @@ " std = np.nanstd(cdata, axis=(1,2))\n", " mad = np.nanmedian(np.abs(cdata - median[:,None,None]), axis=(1,2))\n", "\n", - " ax0.plot(x, mean, 'k', color='#3F7F4C', label=\" mean value \")\n", - " ax0.plot(x, median, 'o', color='red', label=\" median value \")\n", - " ax0.fill_between(x, mean-std, mean+std,\n", + " ax.plot(x, mean, 'k', color='#3F7F4C', label=\" mean value \")\n", + " ax.plot(x, median, 'o', color='red', label=\" median value \")\n", + " ax.fill_between(x, mean-std, mean+std,\n", " alpha=0.6, edgecolor='#3F7F4C', facecolor='#7EFF99',\n", " linewidth=1, linestyle='dashdot', antialiased=True,\n", " label=\" mean value $ \\pm $ std \")\n", "\n", - " ax0.fill_between(x, median-mad, median+mad,\n", + " ax.fill_between(x, median-mad, median+mad,\n", " alpha=0.3, edgecolor='red', facecolor='red',\n", " linewidth=1, linestyle='dashdot', antialiased=True,\n", " label=\" median value $ \\pm $ mad \")\n", @@ -661,7 +661,7 @@ " cerr[fit_result['mask']>0] = np.nan\n", " \n", " meanerr = np.nanmean(cerr, axis=(1,2))\n", - " ax0.fill_between(x, mean-meanerr, mean+meanerr,\n", + " ax.fill_between(x, mean-meanerr, mean+meanerr,\n", " alpha=0.6, edgecolor='#089FFF', facecolor='#089FFF',\n", " linewidth=1, linestyle='dashdot', antialiased=True,\n", " label=\" mean fit error \")\n", @@ -672,13 +672,13 @@ "for i, key in enumerate(['g0mean', 'g1mean', 'gain', 'chi2_ndof']):\n", "\n", " fig = plt.figure(figsize=(10, 5))\n", - " ax0 = fig.add_subplot(111)\n", - " plot_error_band(key, x, ax0)\n", + " ax = fig.add_subplot(111)\n", + " plot_error_band(key, x, ax)\n", "\n", - " ax0.set_xlabel('Memory Cell ID', fontsize=14)\n", - " ax0.set_ylabel(labels[i], fontsize=14)\n", - " ax0.grid()\n", - " ax0.legend()" + " ax.set_xlabel('Memory Cell ID', fontsize=14)\n", + " ax.set_ylabel(labels[i], fontsize=14)\n", + " ax.grid()\n", + " ax.legend()" ] }, {