From 656be091ef0e7136ded0be1c7df530a5ff4bdcd8 Mon Sep 17 00:00:00 2001 From: Mikhail Karnevskiy <karnem@max-exfl001.desy.de> Date: Mon, 6 Aug 2018 09:54:11 +0200 Subject: [PATCH] Add python script to visualise statistics from calibration DB --- notebooks/LPD/PlotFromCalDB.py | 215 +++++++++++++++++++++++++++++++++ 1 file changed, 215 insertions(+) create mode 100644 notebooks/LPD/PlotFromCalDB.py diff --git a/notebooks/LPD/PlotFromCalDB.py b/notebooks/LPD/PlotFromCalDB.py new file mode 100644 index 000000000..9845a140a --- /dev/null +++ b/notebooks/LPD/PlotFromCalDB.py @@ -0,0 +1,215 @@ +import sys +import warnings +import os +import h5py +import numpy as np +import matplotlib +import matplotlib.pyplot as plt +import matplotlib.ticker as ticker +import datetime +import dateutil.parser + +import seaborn +from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions +from cal_tools.cal_tools import gain_map_files, parse_runs, run_prop_seq_from_path, get_notebook_name, get_dir_creation_date, get_constant_from_db +from cal_tools.influx import InfluxLogger +from cal_tools.enums import BadPixels +from cal_tools.plotting import show_overview, plot_badpix_3d, create_constant_overview + +warnings.filterwarnings('ignore') +matplotlib.use("agg") + + +start_date = "2018-07-25" # date to start investigation interval from +end_date = "now" # date to end investigation interval at, can be "now" +interval = 3 # interval for evaluation in days +detector = "LPD1M1" # detector to investigate +constants = ["Offset", "Noise"] # constants to plot +cal_db_interface = "tcp://max-exfl016:8015" # the database interface to use +bias_voltage = 500 +max_cells = 128 +modules = [3] +out_folder = "/gpfs/exfel/data/scratch/karnem/test/" +all_ready_printed = {} + + +detector = detector.upper() +dclass = "AGIPD" if "AGIPD" in detector else "LPD" + + +if modules[0] == -1: + modules = list(range(16)) + + +def get_constant_from_db(device, constant, condition, empty_constant, + cal_db_interface, creation_time = None, + print_once=True): + + if device: + metadata = ConstantMetaData() + metadata.calibration_constant = constant + metadata.detector_condition = condition + if creation_time is None: + metadata.calibration_constant_version = Versions.Now(device=device) + else: + metadata.calibration_constant_version = \ + Versions.Timespan(device=device, start=creation_time) + + try: + print ("Send requiests") + metadata.retrieve(cal_db_interface, when=creation_time.isoformat()) + if constant.name not in all_ready_printed or not print_once: + all_ready_printed[constant.name] = True + print("{} was injected on: {}".format(constant.name, + metadata.calibration_constant_version.begin_at)) + return constant.data + except Exception as e: + return empty_constant + else: + return empty_constant + + +dt = dateutil.parser.parse(start_date) +end = datetime.datetime.now() if end_date.upper() == "NOW" else dateutil.parser.parse(end_date) +step = datetime.timedelta(days=interval) + +det = getattr(Detectors, detector) +dconstants = getattr(Constants, dclass) +ret_constants = {} +while dt < end: + creation_time = dt + print("Retreiving data from: {}".format(creation_time.isoformat())) + for const in constants: + if not const in ret_constants: + ret_constants[const] = {} + if (const in ["Offset", "Noise"] or "DARK" in const.upper()): + dcond = Conditions.Dark + else: + Conditions.Illuminated + + for i in modules: + qm = "Q{}M{}".format(i//4+1, i%4+1) + cdata = get_constant_from_db(getattr(det, qm), + getattr(dconstants, const)(), + getattr(dcond, dclass)(memory_cells=max_cells, + bias_voltage=bias_voltage), + None, + cal_db_interface, + creation_time=creation_time) + + print("Found constant {}: {}".format(const, cdata is not None)) + + if not qm in ret_constants[const]: + ret_constants[const][qm] = [] + + if cdata is not None: + carr = np.zeros((5, max_cells, 3)) + carr_glob = np.zeros((5, 3)) + carr_rad = np.zeros((cdata.shape[0], max_cells, 3)) + for g in range(3): + td = np.nanmean(cdata[...,g], axis=(0,1)) + print (td.shape) + carr[0,:td.shape[0],g] = td + + td = np.nanmedian(cdata[...,g], axis=(0,1)) + carr[1,:td.shape[0],g] = td + + td = np.nanmin(cdata[...,g], axis=(0,1)) + carr[2,:td.shape[0],g] = td + + td = np.nanmax(cdata[...,g], axis=(0,1)) + carr[3,:td.shape[0],g] = td + + td = np.nanstd(cdata[...,g], axis=(0,1)) + carr[4,:td.shape[0],g] = td + + td = np.nanmean(cdata[...,g]) + carr_glob[0, g] = td + + td = np.nanmedian(cdata[...,g]) + carr_glob[1, g] = td + + td = np.nanmin(cdata[...,g]) + carr_glob[2, g] = td + + td = np.nanmax(cdata[...,g]) + carr_glob[3, g] = td + + td = np.nanstd(cdata[...,g]) + carr_glob[3, g] = td + + carr_rad[...,g] = np.nanmedian(cdata[...,g], axis=0) + + ret_constants[const][qm].append((creation_time,(carr, carr_glob, carr_rad))) + + dt += step + + +types = ["mean", "median", "min", "max", "std"] +colors = ["red", "green", "orange", "blue"] +skip = [False, False, False, False, False] + +# loop over constat type +for const, modules in ret_constants.items(): + fig = plt.figure(figsize=(15,7)) + tt = 0 + print (const) + + # loop over type of stat parameter + for typ in range(len(types)): + if skip[typ]: + continue + ax = plt.subplot2grid((np.count_nonzero(~np.array(skip)), 1), (tt, 0)) + + # loop over modules + for mod, data in modules.items(): + ctimes, cd = list(zip(*data)) + pmm, glob, _ = list(zip(*cd)) + pma = np.array(pmm) + ga = np.array(glob) + + d = pma[:,typ,:,:] + print (pma.shape, ga.shape, d.shape) + + if np.allclose(d, 0): + continue + x = [] + y = [] + hue = [] + + # loop over gain + for g in range(3): + dd = (pma[:,typ,:,g]-pma[0,typ,:,g])/pma[0,typ,:,g] + print (pma[0,typ,:,g]) + dd[~np.isfinite(dd)] = 0 + x.append(np.repeat(np.array(ctimes)[:,None], dd.shape[1], axis=1).flatten()) + print (x) + y.append(dd.flatten()) + hue.append(np.ones(dd.shape).flatten()*g) + x = np.concatenate(x) + y = np.concatenate(y) + hue = np.concatenate(hue) + print (x.shape) + seaborn.violinplot(x, y, hue, scale="width", dodge=False, saturation=0.7) + #for i in range(max_cells): + #ax.scatter(ctimes, (pma[:,typ,i,g]-pma[0,typ,i,g])/pma[0,typ,i,g], marker='.', color=colors[g], alpha=0.5) + #ax.plot(ctimes, (ga[:,typ,g]-ga[0,typ,g])/ga[0,typ,g], color=colors[g], alpha=0.5) + + ax.set_ylim(-0.25, .25) + + if typ != len(types)-1: + ax.axes.get_xaxis().set_visible(False) + else: + def format_date(x, pos=None): + + return ctimes[x].strftime('%d-%m') + ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date)) + ax.set_xlabel("Date") + ax.set_ylabel("{}".format(types[typ])) + + tt += 1 + plt.subplots_adjust(wspace=0.2, hspace=0.2) + + if out_folder != "": + fig.savefig("{}/{}_time_development.pdf".format(out_folder, const), bbox_inches='tight') + -- GitLab