diff --git a/src/cal_tools/agipdlib.py b/src/cal_tools/agipdlib.py index 357486fdfbe12883f6a934f92dab8e384457378a..ec6b4e25c7fe896a6e5b7fa2b99408ccb12ae627 100644 --- a/src/cal_tools/agipdlib.py +++ b/src/cal_tools/agipdlib.py @@ -9,6 +9,7 @@ from typing import Any, Dict, List, Optional, Tuple import h5py import numpy as np import sharedmem +from extra_data import DataCollection from iCalibrationDB import Conditions, Constants from cal_tools import agipdalgs as calgs @@ -26,8 +27,6 @@ from cal_tools.enums import AgipdGainMode, BadPixels, SnowResolution from cal_tools.h5_copy_except import h5_copy_except_paths from cal_tools.tools import get_constant_from_db_and_time -from extra_data import DataCollection - def get_num_cells(fname, loc, module): with h5py.File(fname, "r") as f: @@ -196,7 +195,9 @@ class CellSelection: CM_PRESEL = 1 CM_FINSEL = 2 - def get_cells_on_trains(self, trains_sel: List[int], cm: int = 0) -> np.array: + def get_cells_on_trains( + self, trains_sel: List[int], cm: int = 0 + ) -> np.array: """Returns mask of cells selected for processing :param train_sel: list of a train ids selected for processing @@ -538,6 +539,8 @@ class AgipdCorrections: fraction = self.cm_dark_fraction n_itr = self.cm_n_itr n_img = self.shared_dict[i_proc]['nImg'][0] + if n_img == 0: + return cell_id = self.shared_dict[i_proc]['cellId'][:n_img] train_id = self.shared_dict[i_proc]['trainId'][:n_img] cell_ids = cell_id[train_id == train_id[0]] @@ -954,7 +957,7 @@ class AgipdCorrections: :param allcells: array of image.cellsIds of raw data :param allpulses: array of image.pulseIds of raw data :param valid_indices: validated indices of image.data - :param img_selected: mask of selected cells for given + :param img_selected: mask of selected cells for given range of trains :return firange: An array of validated image.data indices to correct @@ -969,12 +972,12 @@ class AgipdCorrections: can_calibrate = (allcells < max_cells) - if not np.any(can_calibrate): - return - if img_selected is not None: can_calibrate &= img_selected + if not np.any(can_calibrate): + return + if valid_indices is None: firange = np.arange(first_index, last_index) else: @@ -1452,6 +1455,70 @@ class AgipdCorrections: self.shared_dict[i]["valid_trains"] = sharedmem.empty(1024, dtype="u8") # noqa +def validate_selected_pulses( + max_pulses: List[int], max_cells: int +) -> List[int]: + """Validate the selected pulses given from the notebook + + Validate the selected range of pulses to correct raw data + of at least one image. + + 1) A pulse indices within one train can't be greater + than the operating memory cells. + 2) Validate the order of the given raneg of pulses. + 3) Raise value error if generate list of pulses is empty. + + :param max_pulses: a list of at most 3 elements defining the + range of pulses to calibrate. + :param max_cells: operating memory cells. + + :return adjusted_range: An adjusted range of pulse indices to correct. + """ + + # Validate selected pulses range: + # 1) A pulseId can't be greater than the operating memory cells. + pulses_range = [max_cells if p > max_cells else p for p in max_pulses] + + if pulses_range != max_pulses: + print( + "WARNING: \"max_pulses\" list has been modified from " + f"{max_pulses} to {pulses_range}. As the number of " + "operating memory cells are less than the selected " + "maximum pulse." + ) + + if len(pulses_range) == 1: + adjusted_range = (0, pulses_range[0], 1) + elif len(pulses_range) == 2: + adjusted_range = (pulses_range[0], pulses_range[1], 1) + elif len(pulses_range) == 3: + adjusted_range = tuple(pulses_range) + else: + raise ValueError( + "ERROR: Wrong length for the list of pulses indices range. " + "Please check the given range for \"max_pulses\":" + f"{max_pulses}. \"max_pulses\" needs to be a list of " + "3 elements, [start, last, step]") + + if adjusted_range[0] > adjusted_range[1]: + raise ValueError( + "ERROR: Pulse range start is greater than range end. " + "Please check the given range for \"max_pulses\":" + f"{max_pulses}. \"max_pulses\" needs to be a list of " + "3 elements, [start, last, step]") + + if not np.all([isinstance(p, int) for p in max_pulses]): + raise TypeError( + "ERROR: \"max_pulses\" elements needs to be integers:" + f" {max_pulses}.") + + print( + "A range of pulse indices is selected to correct:" + f" {pulses_range}") + + return adjusted_range + + class CellRange(CellSelection): """Selection of detector memory cells given as a range""" @@ -1463,7 +1530,7 @@ class CellRange(CellSelection): :param max_cells: number of exposed cells """ self.max_cells = max_cells - self.crange = crange + self.crange = validate_selected_pulses(crange, max_cells) self.flag = np.zeros(self.max_cells, bool) self.flag_cm = np.zeros(self.ncell_max, bool) self.flag[slice(*crange)] = True @@ -1478,7 +1545,9 @@ class CellRange(CellSelection): f"Frames per train: {self.flag.sum()}" ) - def get_cells_on_trains(self, train_sel: List[int], cm: int = 0) -> np.array: + def get_cells_on_trains( + self, train_sel: List[int], cm: int = 0 + ) -> np.array: return np.tile(self._sel_for_cm(self.flag, self.flag_cm, cm), len(train_sel)) @@ -1500,7 +1569,7 @@ class LitFrameSelection(CellSelection): """ # read AgipdLitFrameFinder data self.dev = dev - self.crange = crange + self.crange = validate_selected_pulses(crange, self.ncell_max) self.ethr = energy_threshold intr_src = dev + ':output' nfrm = dc[intr_src, 'data.nFrame'].ndarray() @@ -1568,7 +1637,9 @@ class LitFrameSelection(CellSelection): f"Frames per train: {srng}" ) - def get_cells_on_trains(self, train_sel: List[int], cm: int = 0) -> np.array: + def get_cells_on_trains( + self, train_sel: List[int], cm: int = 0 + ) -> np.array: train_idx = np.flatnonzero(np.in1d(self.train_ids, train_sel)) i0 = self.first[train_idx] iN = i0 + self.count[train_idx]