diff --git a/src/cal_tools/agipdlib.py b/src/cal_tools/agipdlib.py
index 357486fdfbe12883f6a934f92dab8e384457378a..ec6b4e25c7fe896a6e5b7fa2b99408ccb12ae627 100644
--- a/src/cal_tools/agipdlib.py
+++ b/src/cal_tools/agipdlib.py
@@ -9,6 +9,7 @@ from typing import Any, Dict, List, Optional, Tuple
 import h5py
 import numpy as np
 import sharedmem
+from extra_data import DataCollection
 from iCalibrationDB import Conditions, Constants
 
 from cal_tools import agipdalgs as calgs
@@ -26,8 +27,6 @@ from cal_tools.enums import AgipdGainMode, BadPixels, SnowResolution
 from cal_tools.h5_copy_except import h5_copy_except_paths
 from cal_tools.tools import get_constant_from_db_and_time
 
-from extra_data import DataCollection
-
 
 def get_num_cells(fname, loc, module):
     with h5py.File(fname, "r") as f:
@@ -196,7 +195,9 @@ class CellSelection:
     CM_PRESEL = 1
     CM_FINSEL = 2
 
-    def get_cells_on_trains(self, trains_sel: List[int], cm: int = 0) -> np.array:
+    def get_cells_on_trains(
+        self, trains_sel: List[int], cm: int = 0
+    ) -> np.array:
         """Returns mask of cells selected for processing
 
         :param train_sel: list of a train ids selected for processing
@@ -538,6 +539,8 @@ class AgipdCorrections:
         fraction = self.cm_dark_fraction
         n_itr = self.cm_n_itr
         n_img = self.shared_dict[i_proc]['nImg'][0]
+        if n_img == 0:
+            return
         cell_id = self.shared_dict[i_proc]['cellId'][:n_img]
         train_id = self.shared_dict[i_proc]['trainId'][:n_img]
         cell_ids = cell_id[train_id == train_id[0]]
@@ -954,7 +957,7 @@ class AgipdCorrections:
         :param allcells: array of image.cellsIds of raw data
         :param allpulses: array of image.pulseIds of raw data
         :param valid_indices: validated indices of image.data
-        :param img_selected: mask of selected cells for given 
+        :param img_selected: mask of selected cells for given
             range of trains
         :return firange: An array of validated image.data
                          indices to correct
@@ -969,12 +972,12 @@ class AgipdCorrections:
 
         can_calibrate = (allcells < max_cells)
 
-        if not np.any(can_calibrate):
-            return
-
         if img_selected is not None:
             can_calibrate &= img_selected
 
+        if not np.any(can_calibrate):
+            return
+
         if valid_indices is None:
             firange = np.arange(first_index, last_index)
         else:
@@ -1452,6 +1455,70 @@ class AgipdCorrections:
             self.shared_dict[i]["valid_trains"] = sharedmem.empty(1024, dtype="u8")  # noqa
 
 
+def validate_selected_pulses(
+    max_pulses: List[int], max_cells: int
+) -> List[int]:
+    """Validate the selected pulses given from the notebook
+
+    Validate the selected range of pulses to correct raw data
+    of at least one image.
+
+    1) A pulse indices within one train can't be greater
+    than the operating memory cells.
+    2) Validate the order of the given raneg of pulses.
+    3) Raise value error if generate list of pulses is empty.
+
+    :param max_pulses: a list of at most 3 elements defining the
+    range of pulses to calibrate.
+    :param max_cells: operating memory cells.
+
+    :return adjusted_range: An adjusted range of pulse indices to correct.
+    """
+
+    # Validate selected pulses range:
+    # 1) A pulseId can't be greater than the operating memory cells.
+    pulses_range = [max_cells if p > max_cells else p for p in max_pulses]
+
+    if pulses_range != max_pulses:
+        print(
+            "WARNING: \"max_pulses\" list has been modified from "
+            f"{max_pulses} to {pulses_range}. As the number of "
+            "operating memory cells are less than the selected "
+            "maximum pulse."
+        )
+
+    if len(pulses_range) == 1:
+        adjusted_range = (0, pulses_range[0], 1)
+    elif len(pulses_range) == 2:
+        adjusted_range = (pulses_range[0], pulses_range[1], 1)
+    elif len(pulses_range) == 3:
+        adjusted_range = tuple(pulses_range)
+    else:
+        raise ValueError(
+            "ERROR: Wrong length for the list of pulses indices range. "
+            "Please check the given range for \"max_pulses\":"
+            f"{max_pulses}. \"max_pulses\" needs to be a list of "
+            "3 elements, [start, last, step]")
+
+    if adjusted_range[0] > adjusted_range[1]:
+        raise ValueError(
+            "ERROR: Pulse range start is greater than range end. "
+            "Please check the given range for \"max_pulses\":"
+            f"{max_pulses}. \"max_pulses\" needs to be a list of "
+            "3 elements, [start, last, step]")
+
+    if not np.all([isinstance(p, int) for p in max_pulses]):
+        raise TypeError(
+            "ERROR: \"max_pulses\" elements needs to be integers:"
+            f" {max_pulses}.")
+
+    print(
+        "A range of pulse indices is selected to correct:"
+        f" {pulses_range}")
+
+    return adjusted_range
+
+
 class CellRange(CellSelection):
     """Selection of detector memory cells given as a range"""
 
@@ -1463,7 +1530,7 @@ class CellRange(CellSelection):
         :param max_cells: number of exposed cells
         """
         self.max_cells = max_cells
-        self.crange = crange
+        self.crange = validate_selected_pulses(crange, max_cells)
         self.flag = np.zeros(self.max_cells, bool)
         self.flag_cm = np.zeros(self.ncell_max, bool)
         self.flag[slice(*crange)] = True
@@ -1478,7 +1545,9 @@ class CellRange(CellSelection):
             f"Frames per train: {self.flag.sum()}"
         )
 
-    def get_cells_on_trains(self, train_sel: List[int], cm: int = 0) -> np.array:
+    def get_cells_on_trains(
+        self, train_sel: List[int], cm: int = 0
+    ) -> np.array:
         return np.tile(self._sel_for_cm(self.flag, self.flag_cm, cm),
                        len(train_sel))
 
@@ -1500,7 +1569,7 @@ class LitFrameSelection(CellSelection):
         """
         # read AgipdLitFrameFinder data
         self.dev = dev
-        self.crange = crange
+        self.crange = validate_selected_pulses(crange, self.ncell_max)
         self.ethr = energy_threshold
         intr_src = dev + ':output'
         nfrm = dc[intr_src, 'data.nFrame'].ndarray()
@@ -1568,7 +1637,9 @@ class LitFrameSelection(CellSelection):
             f"Frames per train: {srng}"
         )
 
-    def get_cells_on_trains(self, train_sel: List[int], cm: int = 0) -> np.array:
+    def get_cells_on_trains(
+        self, train_sel: List[int], cm: int = 0
+    ) -> np.array:
         train_idx = np.flatnonzero(np.in1d(self.train_ids, train_sel))
         i0 = self.first[train_idx]
         iN = i0 + self.count[train_idx]