diff --git a/cal_tools/cal_tools/agipdlib.py b/cal_tools/cal_tools/agipdlib.py index 36d2d404454151a6540aea1e6cdaf2b45549bfc1..f9f6d7bd394b30cde7274c78339fb7ca9d19b0e5 100644 --- a/cal_tools/cal_tools/agipdlib.py +++ b/cal_tools/cal_tools/agipdlib.py @@ -76,7 +76,8 @@ class AgipdCorrections: cal_det_instance="AGIPD1M1", karabo_data_mode=False, force_hg_if_below=None, force_mg_if_below=None, mask_noisy_adc=False, adjust_mg_baseline=False, - acquisition_rate=None): + acquisition_rate=None, dont_zero_nans=False, + dont_zero_orange=False): """ Initialize an AgipdCorrections Class @@ -148,6 +149,9 @@ class AgipdCorrections: self.adjust_mg_baseline = adjust_mg_baseline self.mg_bl_adjust = 0 self.acquisition_rate = acquisition_rate + self.dont_zero_nans = dont_zero_nans + self.dont_zero_orange = dont_zero_orange + self.valid_indices = None def get_iteration_range(self): """Returns a range expression over which to iterate in chunks @@ -999,14 +1003,16 @@ class AgipdCorrections: # create a bad pixel mask for the data # we add any non-finite values to the mask - bidx = ~np.isfinite(im) - im[bidx] = 0 - msk[bidx] |= BadPixels.VALUE_IS_NAN.value + if not self.dont_zero_nans: + bidx = ~np.isfinite(im) + im[bidx] = 0 + msk[bidx] |= BadPixels.VALUE_IS_NAN.value # and such with have unrealistically high and low pixel values - bidx = (im < -1e7) | (im > 1e7) - im[bidx] = 0 - msk[bidx] |= BadPixels.VALUE_OUT_OF_RANGE.value + if not self.dont_zero_orange: + bidx = (im < -1e7) | (im > 1e7) + im[bidx] = 0 + msk[bidx] |= BadPixels.VALUE_OUT_OF_RANGE.value # include pixels with zero standard deviation in the dataset into # the mask @@ -1070,7 +1076,7 @@ class AgipdCorrections: """ Return the indices of valid data """ agipd_base = self.idx_base - print(agipd_base) + if self.index_v == 2: count = np.squeeze(self.infile[agipd_base + "image/count"]) first = np.squeeze(self.infile[agipd_base + "image/first"]) @@ -1082,9 +1088,22 @@ class AgipdCorrections: lowok = (idxtrains > medianTrain - 1e4) highok = (idxtrains < medianTrain + 1e4) valid &= lowok & highok + + uq, fidxv, cntsv = np.unique(idxtrains, + return_index=True, + return_counts=True) + valid &= cntsv == 1 # filter out double trains self.valid = valid last_index = int(first[valid][-1] + count[valid][-1]) first_index = int(first[valid][0]) + + # do actual validity filtering: + validc, validf = count[valid], first[valid] + valid_indices = np.concatenate([np.arange(validf[i], + validf[i]+validc[i]) + for i in range(validf.size)], + axis=0) + self.valid_indices = np.squeeze(valid_indices).astype(np.int32) elif self.index_v == 1: status = np.squeeze(self.infile[agipd_base + "image/status"]) @@ -1119,8 +1138,11 @@ class AgipdCorrections: last_index = self.last_index max_cells = self.max_cells agipd_base = self.agipd_base - allcells = self.infile[agipd_base + "image/cellId"] - allcells = np.squeeze(allcells[first_index:last_index, ...]) + allcells = np.squeeze(self.infile[agipd_base + "image/cellId"]) + if self.valid_indices is not None: + allcells = allcells[self.valid_indices] + else: + allcells = allcells[first_index:last_index] single_image = self.infile[agipd_base + "image/data"][first_index, ...] single_image = np.array(single_image) @@ -1129,7 +1151,10 @@ class AgipdCorrections: if np.count_nonzero(can_calibrate) == 0: return allcells = allcells[can_calibrate] - firange = np.arange(first_index, last_index) + if self.valid_indices is not None: + firange = np.arange(first_index, last_index) + else: + firange = self.valid_indices firange = firange[can_calibrate] self.oshape = (firange.size if not self.il_mode else firange.size // 2, @@ -1152,6 +1177,7 @@ class AgipdCorrections: if self.il_mode: firange = firange[0::2] alltrains = self.infile[agipd_base + "image/trainId"] + alltrains = np.squeeze( alltrains[first_index:last_index, ...]) diff --git a/cal_tools/cal_tools/tools.py b/cal_tools/cal_tools/tools.py index 85f3e167973f21860a516fc2fc17207266604921..ab242cc61052cf904d5ca115694d5eb89e1b6ea8 100644 --- a/cal_tools/cal_tools/tools.py +++ b/cal_tools/cal_tools/tools.py @@ -297,9 +297,9 @@ def make_titlepage(sphinx_path, project, data_path, version): title_tmp = Template(file_.read()) with open("{}/titlepage.tex.txt".format(sphinx_path), "w+") as mf: - mf.write(dedent(title_tmp.render(project=project, - data_path=data_path, - version=version))) + mf.write(dedent(title_tmp.render(project=tex_escape(project), + data_path=tex_escape(data_path), + version=tex_escape(version)))) def finalize(joblist, finaljob, run_path, out_path, project, calibration, @@ -461,7 +461,8 @@ already_printed = {} def get_from_db(device, constant, condition, empty_constant, cal_db_interface, creation_time=None, - verbosity=1, timeout=30000, ntries=120, meta_only=True): + verbosity=1, timeout=30000, ntries=120, meta_only=True, + version_info=False): """ Return calibration constants and metadata requested from CalDB @@ -480,30 +481,44 @@ def get_from_db(device, constant, condition, empty_constant, """ from iCalibrationDB import ConstantMetaData, Versions import zmq - + + if version_info: + meta_only = False + if device: metadata = ConstantMetaData() metadata.calibration_constant = constant metadata.detector_condition = condition + when = None if creation_time is None: - metadata.calibration_constant_version = Versions.Now(device=device) + metadata.calibration_constant_version = Versions.Now( + device=device) else: + if hasattr(creation_time, 'isoformat'): + when = creation_time.isoformat() + metadata.calibration_constant_version = Versions.Timespan( - device=device, - start=creation_time) + device=device, + start=creation_time) while ntries > 0: + this_interface = get_random_db_interface(cal_db_interface) try: - metadata.retrieve(this_interface, timeout=timeout, - meta_only=meta_only) + r = metadata.retrieve(this_interface, timeout=timeout, + when=when, meta_only=meta_only, + version_info=version_info) + if version_info: + return r break except zmq.error.Again: ntries -= 1 + sleep(np.random.randint(30)) except Exception as e: if verbosity > 0: print(e) ntries = 0 + break if ntries > 0: if verbosity > 0: diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb index 5d65241159bc13bd572877ad546739d966bc21b2..d0c1cb0def4043d699f2989732e25ba38fded598 100644 --- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb +++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb @@ -18,25 +18,24 @@ "ExecuteTime": { "end_time": "2019-02-21T11:30:06.730220Z", "start_time": "2019-02-21T11:30:06.658286Z" - }, - "collapsed": true + } }, "outputs": [], "source": [ - "in_folder = \"/gpfs/exfel/exp/SPB/201901/p002480/raw/\" # the folder to read data from, required\n", - "run = 11 # runs to process, required\n", - "out_folder = \"/gpfs/exfel/exp/SPB/201901/p002480/proc/\" # the folder to output to, required\n", - "calfile = \"/gpfs/exfel/data/scratch/haufs/agipd_on_demand/agipd_store.h5\" # path to calibration file. Leave empty if all data should come from DB\n", + "in_folder = \"/gpfs/exfel/exp/MID/201931/p900090/raw/\" # the folder to read data from, required\n", + "run = 5 # runs to process, required\n", + "out_folder = \"/gpfs/exfel/exp/MID/201931/p900090/proc/\" # the folder to output to, required\n", + "calfile = \"/gpfs/exfel/data/scratch/haufs/agipd_on_demand/agipd_store_mid.h5\" # path to calibration file. Leave empty if all data should come from DB\n", "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n", "mem_cells = 0 # number of memory cells used, set to 0 to automatically infer\n", "interlaced = False # whether data is in interlaced layout\n", "overwrite = True # set to True if existing data should be overwritten\n", "no_relative_gain = False # do not do relative gain correction\n", - "cluster_profile = \"noDB5\"\n", + "cluster_profile = \"noDB\"\n", "max_pulses = 500\n", "local_input = False\n", "bias_voltage = 300\n", - "cal_db_interface = \"tcp://max-exfl016:8020#8025\" # the database interface to use\n", + "cal_db_interface = \"tcp://max-exfl016:8015#8045\" # the database interface to use\n", "use_dir_creation_date = True # use the creation data of the input dir for database queries\n", "sequences_per_node = 2 # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel\n", "photon_energy = 9.2 # photon energy in keV\n", @@ -53,12 +52,14 @@ "max_cells_db = 0 # set to a value different than 0 to use this value for DB queries\n", "chunk_size_idim = 1 # chunking size of imaging dimension, adjust if user software is sensitive to this.\n", "creation_date_offset = \"00:00:00\" # add an offset to creation date, e.g. to get different constants\n", - "instrument = \"SPB\" # the instrument the detector is installed at, required\n", + "instrument = \"MID\" # the instrument the detector is installed at, required\n", "force_hg_if_below = 1000 # set to a value other than 0 to force a pixel into high gain if it's high gain offset subtracted value is below this threshold\n", "force_mg_if_below = 1000 # set to a value other than 0 to force a pixel into medium gain if it's medium gain offset subtracted value is below this threshold\n", "mask_noisy_adc = 0.25 # set to a value other than 0 and below 1 to mask entire ADC if fraction of noisy pixels is above\n", "adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value\n", "acq_rate = 0. # the detector acquisition rate, use 0 to try to auto-determine\n", + "dont_zero_nans = False # do not zero NaN values in corrected data\n", + "dont_zero_orange = False # do not zero very negative and very large values\n", "\n", "def balance_sequences(in_folder, run, sequences, sequences_per_node):\n", " import glob\n", @@ -89,8 +90,7 @@ "ExecuteTime": { "end_time": "2019-02-21T11:30:07.086286Z", "start_time": "2019-02-21T11:30:06.929722Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -181,8 +181,7 @@ "ExecuteTime": { "end_time": "2019-02-21T11:30:07.263445Z", "start_time": "2019-02-21T11:30:07.217070Z" - }, - "collapsed": true + } }, "outputs": [], "source": [ @@ -241,8 +240,7 @@ "ExecuteTime": { "end_time": "2019-02-21T11:30:07.974174Z", "start_time": "2019-02-21T11:30:07.914832Z" - }, - "collapsed": true + } }, "outputs": [], "source": [ @@ -308,8 +306,7 @@ "ExecuteTime": { "end_time": "2019-02-21T11:30:08.870802Z", "start_time": "2019-02-21T11:30:08.826285Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -342,8 +339,7 @@ "ExecuteTime": { "end_time": "2019-02-21T11:30:16.057429Z", "start_time": "2019-02-21T11:30:10.082114Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -353,7 +349,8 @@ " bins_gain_vs_signal, bins_signal_low_range, bins_signal_high_range,\n", " bins_dig_gain_vs_signal, max_pulses, dbparms, fileparms, nodb, chunk_size_idim,\n", " special_opts, il_mode, loc, dinstance, force_hg_if_below, force_mg_if_below,\n", - " mask_noisy_adc, adjust_mg_baseline, acq_rate, inp):\n", + " mask_noisy_adc, adjust_mg_baseline, acq_rate, dont_zero_nans, dont_zero_orange,\n", + " inp):\n", " print(\"foo\")\n", " import numpy as np\n", " import copy\n", @@ -445,7 +442,8 @@ " h5_index_path=\"INDEX/{}/DET/{{}}CH0:xtdf/\".format(loc),\n", " cal_det_instance=dinstance, force_hg_if_below=force_hg_if_below,\n", " force_mg_if_below=force_mg_if_below, mask_noisy_adc=mask_noisy_adc,\n", - " adjust_mg_baseline=adjust_mg_baseline, acquisition_rate=acq_rate)\n", + " adjust_mg_baseline=adjust_mg_baseline, acquisition_rate=acq_rate,\n", + " dont_zero_nans=dont_zero_nans, dont_zero_orange=dont_zero_orange)\n", " \n", " blc_noise, blc_noise_threshold, blc_hist, match_asics, corr_asic_diag, melt_snow = special_opts\n", " agipd_corr.baseline_corr_using_noise = blc_noise\n", @@ -466,7 +464,7 @@ " print(\"Initialized constants\")\n", " \n", " for irange in agipd_corr.get_iteration_range():\n", - " \n", + " \n", " agipd_corr.correct_agipd(irange)\n", " print(\"Iterated\")\n", " \n", @@ -541,7 +539,7 @@ " sequences_qm, bins_gain_vs_signal, bins_signal_low_range, bins_signal_high_range,\n", " bins_dig_gain_vs_signal, max_pulses, dbparms, fileparms, nodb, chunk_size_idim,\n", " special_opts, il_mode, loc, dinstance, force_hg_if_below, force_mg_if_below,\n", - " mask_noisy_adc, adjust_mg_baseline, acq_rate)\n", + " mask_noisy_adc, adjust_mg_baseline, acq_rate, dont_zero_nans, dont_zero_orange)\n", " \n", " r = view.map_sync(p, inp)\n", " \n", @@ -571,9 +569,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "\n", @@ -590,8 +586,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:28:51.765030Z", "start_time": "2019-02-18T17:28:51.714783Z" - }, - "collapsed": true + } }, "outputs": [], "source": [ @@ -636,8 +631,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:28:52.857960Z", "start_time": "2019-02-18T17:28:51.767217Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -651,8 +645,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:28:53.690522Z", "start_time": "2019-02-18T17:28:52.860143Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -687,8 +680,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:28:54.370559Z", "start_time": "2019-02-18T17:28:53.691959Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -702,8 +694,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:31:51.668096Z", "start_time": "2019-02-18T17:31:51.529158Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -730,7 +721,6 @@ "end_time": "2019-02-18T17:28:57.327702Z", "start_time": "2019-02-18T17:28:54.377061Z" }, - "collapsed": false, "scrolled": false }, "outputs": [], @@ -748,8 +738,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:20.634480Z", "start_time": "2019-02-18T17:28:57.329231Z" - }, - "collapsed": true + } }, "outputs": [], "source": [ @@ -802,8 +791,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:27.025667Z", "start_time": "2019-02-18T17:29:20.642029Z" - }, - "collapsed": true + } }, "outputs": [], "source": [ @@ -835,8 +823,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:33.226396Z", "start_time": "2019-02-18T17:29:27.027758Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -866,8 +853,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:33.761015Z", "start_time": "2019-02-18T17:29:33.227922Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -887,8 +873,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:35.903487Z", "start_time": "2019-02-18T17:29:33.762568Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -913,8 +898,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:39.369686Z", "start_time": "2019-02-18T17:29:35.905152Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -934,8 +918,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:49.217848Z", "start_time": "2019-02-18T17:29:39.371232Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -952,8 +935,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:49.222484Z", "start_time": "2019-02-18T17:29:49.219933Z" - }, - "collapsed": true + } }, "outputs": [], "source": [ @@ -976,8 +958,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:49.641675Z", "start_time": "2019-02-18T17:29:49.224167Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -1006,8 +987,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:49.651913Z", "start_time": "2019-02-18T17:29:49.643556Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -1036,8 +1016,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:50.086169Z", "start_time": "2019-02-18T17:29:49.653391Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -1064,8 +1043,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:51.686562Z", "start_time": "2019-02-18T17:29:50.088883Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -1090,8 +1068,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:53.662423Z", "start_time": "2019-02-18T17:29:51.688376Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -1109,8 +1086,7 @@ "ExecuteTime": { "end_time": "2019-02-18T17:29:55.483270Z", "start_time": "2019-02-18T17:29:53.664226Z" - }, - "collapsed": false + } }, "outputs": [], "source": [ @@ -1127,9 +1103,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } @@ -1150,7 +1124,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb index f3e5930395aa741fb98611469932e1b119cc2118..297962e5a8a180ae1d7b866a1e7b862bedfd0690 100644 --- a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb @@ -14,9 +14,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "in_folder = \"/gpfs/exfel/exp/FXE/201802/p002271/ra\" # the folder to read data from, required\n", @@ -42,6 +40,7 @@ "gmapfile = \"/gpfs/exfel/data/scratch/xcal/jfgain/gainMaps_M233.h5\" #temporary gain calibration file, not in the DB; leave empty if using DB\n", "memcells = 1 # number of memory cells\n", "karabo_id = \"FXE_XAD_JF1M\" # karabo prefix of Jungfrau devices\n", + "karabo_id_control = \"\" # if control is on a different ID, set to empty string for using the same as for data\n", "receiver_id = \"RECEIVER\" # inset for receiver devices\n", "control_id = \"CONTROL\" # inset for control devices\n", "db_module = \"Jungfrau_M233\" # ID of module in calibration database\n", @@ -70,18 +69,14 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "import warnings\n", @@ -158,22 +153,23 @@ " creation_time = get_dir_creation_date(in_folder, run)\n", " print(\"Using {} as creation time\".format(creation_time))\n", " \n", - "cal_timeout = 600000 #ms" + "cal_timeout = 600000 #ms\n", + "\n", + "if karabo_id_control == \"\":\n", + " karabo_id_control = karabo_id" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import h5py\n", "if not manual_slow_data:\n", " with h5py.File(fp_path_contr.format(0), 'r') as f:\n", - " integration_time = int(f['/RUN/{}/DET/{}/exposureTime/value'.format(karabo_id, control_id)][()]*1e6)\n", - " bias_voltage = int(np.squeeze(f['/RUN/{}/DET/{}/vHighVoltage/value'.format(karabo_id, control_id)])[0])\n", + " integration_time = int(f['/RUN/{}/DET/{}/exposureTime/value'.format(karabo_id_control, control_id)][()]*1e6)\n", + " bias_voltage = int(np.squeeze(f['/RUN/{}/DET/{}/vHighVoltage/value'.format(karabo_id_control, control_id)])[0])\n", "print(\"Integration time is {} us\".format(integration_time))\n", "print(\"Bias voltage is {} V\".format(bias_voltage))" ] @@ -181,9 +177,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "dirlist = sorted(os.listdir(ped_dir))\n", @@ -214,9 +208,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import copy\n", @@ -235,9 +227,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def get_PSI_gainmaps(fname, dset):\n", @@ -253,9 +243,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "## offset\n", @@ -335,9 +323,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# gain correction\n", @@ -350,9 +336,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def copy_and_sanitize_non_cal_data(infile, outfile, h5base):\n", @@ -381,9 +365,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "import copy\n", @@ -438,9 +420,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def do_2d_plot(data, edges, y_axis, x_axis):\n", @@ -459,9 +439,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "h, ex, ey = np.histogram2d(rim_data.flatten(), gim_data.flatten(),\n", @@ -481,9 +459,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20,10))\n", @@ -506,9 +482,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20,10))\n", @@ -531,9 +505,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20,10))\n", @@ -554,9 +526,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20,10))\n", @@ -583,9 +553,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20,10))\n", @@ -606,9 +574,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "from cal_tools.enums import BadPixels\n", @@ -632,9 +598,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20,10))\n", @@ -646,9 +610,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } @@ -669,7 +631,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_NBC.ipynb index a79590ee15f8357b521f6e7af8ab83c11d2506d3..236d45880a20e11b312402e89df878729ea136b0 100644 --- a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_NBC.ipynb @@ -14,9 +14,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "in_folder = '/gpfs/exfel/exp/SPB/201921/p002429/raw/' # folder under which runs are located, required\n", @@ -40,6 +38,7 @@ "run_med = 0 # run number for G1 dark run, required\n", "run_low = 0 # run number for G2 dark run, required\n", "karabo_id = \"FXE_XAD_JF500K\" # karabo prefix of Jungfrau devices\n", + "karabo_id_control = \"\" # if control is on a different ID, set to empty string for using the same as for data\n", "receiver_id = \"RECEIVER\" # inset for receiver devices\n", "control_id = \"CONTROL\" # inset for control devices\n", "db_module = \"Jungfrau_M233\" # ID of module in calibration database\n", @@ -50,9 +49,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import warnings\n", @@ -92,15 +89,16 @@ " creation_time = get_dir_creation_date(in_folder, run_high)\n", " print(\"Using {} as creation time\".format(creation_time))\n", " \n", - "offset_abs_threshold = [offset_abs_threshold_low, offset_abs_threshold_high]" + "offset_abs_threshold = [offset_abs_threshold_low, offset_abs_threshold_high]\n", + "\n", + "if karabo_id_control == \"\":\n", + " karabo_id_control = karabo_id" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "noiseCal = xcal.NoiseCalculator(sensorSize, nCells=memoryCells, cores=cpuCores, parallel=is_parallel, gains=gains,\n", @@ -110,9 +108,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import h5py\n", @@ -126,8 +122,8 @@ "\n", " if not manual_slow_data:\n", " with h5py.File(fp_path.format(0), 'r') as f:\n", - " integration_time = int(f['/RUN/{}/DET/{}/exposureTime/value'.format(karabo_id, control_id)][()]*1e6)\n", - " bias_voltage = int(np.squeeze(f['/RUN/{}/DET/{}/vHighVoltage/value'.format(karabo_id, control_id)])[0])\n", + " integration_time = int(f['/RUN/{}/DET/{}/exposureTime/value'.format(karabo_id_control, control_id)][()]*1e6)\n", + " bias_voltage = int(np.squeeze(f['/RUN/{}/DET/{}/vHighVoltage/value'.format(karabo_id_control, control_id)])[0])\n", " print(\"Integration time is {} us\".format(integration_time))\n", " print(\"Bias voltage is {} V\".format(bias_voltage))\n", "\n", @@ -176,7 +172,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, "scrolled": false }, "outputs": [], @@ -257,9 +252,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "def print_bp_entry(bp):\n", @@ -273,9 +266,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "bad_pixels_map = np.zeros(noise_map.shape, np.uint32)\n", @@ -310,9 +301,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "## offset\n", @@ -401,9 +390,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "\n", @@ -441,9 +428,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "is_log = True\n", @@ -481,7 +466,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.7" } }, "nbformat": 4,