From 6d1aa45d127f95d4bfe8e23f1ef832b2413b35d4 Mon Sep 17 00:00:00 2001
From: karnem <mikhail.karnevskiy@desy.de>
Date: Fri, 30 Aug 2019 15:55:30 +0200
Subject: [PATCH] Add plotting constants of FCCD

---
 cal_tools/cal_tools/ana_tools.py              |  14 +
 .../FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb   | 531 ++++++++++++++++++
 xfel_calibrate/notebooks.py                   |   6 +
 3 files changed, 551 insertions(+)
 create mode 100644 notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb

diff --git a/cal_tools/cal_tools/ana_tools.py b/cal_tools/cal_tools/ana_tools.py
index f58ace59b..dce75cf70 100644
--- a/cal_tools/cal_tools/ana_tools.py
+++ b/cal_tools/cal_tools/ana_tools.py
@@ -352,6 +352,20 @@ class HMType(Enum):
     INSET_AXIS = 2
 
 
+def get_range(data, scale):
+    """
+    Get range, which includes most of the data points.
+    Range is calculated in units of median absolute deviations
+
+    :param data: numpy.array of data points
+    :param scale: range in units of median absolute deviations
+    :return:
+    """
+    med = np.nanmedian(data)
+    mad = np.nanmedian(np.abs(data.flatten() - med))
+    return med - scale * mad, med + scale * mad
+
+
 def hm_combine(data, fname=None, htype=None, **kwargs):
     """
     Plot heatmap for calibration report
diff --git a/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb b/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb
new file mode 100644
index 000000000..406e88e09
--- /dev/null
+++ b/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb
@@ -0,0 +1,531 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Statistical analysis of calibration factors#\n",
+    "\n",
+    "Author: Mikhail Karnevskiy, Steffen Hauf, Version 0.1\n",
+    "\n",
+    "A description of the notebook."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "cluster_profile = \"noDB\" # The ipcluster profile to use\n",
+    "start_date = \"2019-01-30\" # date to start investigation interval from\n",
+    "end_date = \"2019-08-30\" # date to end investigation interval at, can be \"now\"\n",
+    "nconstants = 10 # Number of time stamps to plot. If not 0, overcome start_date.\n",
+    "dclass=\"CCD\" # Detector class\n",
+    "db_module = \"fastCCD1\" # detector entry in the DB to investigate\n",
+    "constants = [\"Noise\"]#, \"Offset\"] # constants to plot\n",
+    "\n",
+    "gain_setting = [0,1,2,8] # gain stages\n",
+    "bias_voltage = [79] # Bias voltage\n",
+    "temperature = [235]#, 216, 245] # Operation temperature\n",
+    "integration_time = [1, 50] # Integration time\n",
+    "pixels_x=[1934]\n",
+    "pixels_y=[960]\n",
+    "max_time = 15\n",
+    "parameter_names = ['bias_voltage', 'integration_time', 'temperature', \n",
+    "                   'gain_setting', 'pixels_x', 'pixels_y'] # names of parameters\n",
+    "photon_energy = 9.2 # Photon energy of the beam\n",
+    "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_FCCD5/\" # output folder\n",
+    "use_existing = \"\" # If not empty, constants stored in given folder will be used\n",
+    "cal_db_interface = \"tcp://max-exfl016:8015#8025\" # the database interface to use\n",
+    "cal_db_timeout = 180000 # timeout on caldb requests\",\n",
+    "plot_range = 3 # range for plotting in units of median absolute deviations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "import copy\n",
+    "import datetime\n",
+    "import dateutil.parser\n",
+    "import numpy as np\n",
+    "from operator import itemgetter\n",
+    "import os\n",
+    "import sys\n",
+    "import warnings\n",
+    "warnings.filterwarnings('ignore')\n",
+    "\n",
+    "import h5py\n",
+    "import matplotlib\n",
+    "%matplotlib inline\n",
+    "\n",
+    "from iCalibrationDB import Constants, Conditions, Detectors, ConstantMetaData\n",
+    "from cal_tools.tools import get_from_db, get_random_db_interface\n",
+    "from cal_tools.ana_tools import (save_dict_to_hdf5, load_data_from_hdf5, \n",
+    "                                 combine_constants, HMType,\n",
+    "                                 hm_combine, combine_lists, get_range)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Prepare variables\n",
+    "spShape = (967, 10) # Shape of superpixel\n",
+    "\n",
+    "parameters = [globals()[x] for x in parameter_names]\n",
+    "\n",
+    "constantsDark = {'Noise': 'BadPixelsDark',\n",
+    "                 'Offset': 'BadPixelsDark'}\n",
+    "print('Bad pixels data: ', constantsDark)\n",
+    "\n",
+    "# Define parameters in order to perform loop over time stamps\n",
+    "start = datetime.datetime.now() if start_date.upper() == \"NOW\" else dateutil.parser.parse(\n",
+    "    start_date)\n",
+    "end = datetime.datetime.now() if end_date.upper() == \"NOW\" else dateutil.parser.parse(\n",
+    "    end_date)\n",
+    "\n",
+    "# Create output folder\n",
+    "os.makedirs(out_folder, exist_ok=True)\n",
+    "\n",
+    "# Get getector conditions\n",
+    "det = getattr(Detectors, db_module)\n",
+    "dconstants = getattr(Constants, dclass)(det.detector_type)\n",
+    "\n",
+    "print('CalDB Interface: {}'.format(cal_db_interface))\n",
+    "print('Start time at: ', start)\n",
+    "print('End time at: ', end)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "parameter_list = combine_lists(*parameters, names = parameter_names)\n",
+    "print(parameter_list)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [],
+   "source": [
+    "# Retrieve list of meta-data\n",
+    "constant_versions = []\n",
+    "constant_parameters = []\n",
+    "constantBP_versions = []\n",
+    "\n",
+    "# Loop over constants\n",
+    "for c, const in enumerate(constants):\n",
+    "    \n",
+    "    if use_existing != \"\":\n",
+    "        break\n",
+    "    \n",
+    "    # Loop over parameters\n",
+    "    for pars in parameter_list:\n",
+    "    \n",
+    "        if (const in [\"Offset\", \"Noise\", \"SlopesPC\"] or \"DARK\" in const.upper()):\n",
+    "            dcond = Conditions.Dark\n",
+    "            mcond = getattr(dcond, dclass)(**pars)\n",
+    "        else:\n",
+    "            dcond = Conditions.Illuminated\n",
+    "            mcond = getattr(dcond, dclass)(**pars,\n",
+    "                                photon_energy=photon_energy)\n",
+    "\n",
+    "            \n",
+    "            \n",
+    "        print('Request: ', const, 'with paramters:', pars)\n",
+    "        # Request Constant versions for given parameters and module\n",
+    "        data = get_from_db(det,\n",
+    "                           getattr(dconstants,\n",
+    "                                   const)(),\n",
+    "                           copy.deepcopy(mcond), None,\n",
+    "                           cal_db_interface,\n",
+    "                           creation_time=start,\n",
+    "                           verbosity=0,\n",
+    "                           timeout=cal_db_timeout,\n",
+    "                           meta_only=True,\n",
+    "                           version_info=True)\n",
+    "        \n",
+    "        if not isinstance(data, list):\n",
+    "                continue\n",
+    "            \n",
+    "        data = sorted(data, key=itemgetter('begin_at'))\n",
+    "        print('Number of retrieved constants: {}'.format(len(data)) )\n",
+    "                \n",
+    "        if const in constantsDark:\n",
+    "            # Request BP constant versions\n",
+    "            dataBP = get_from_db(det,\n",
+    "                                 getattr(dconstants, \n",
+    "                                         constantsDark[const])(),\n",
+    "                                 copy.deepcopy(mcond), None,\n",
+    "                                 cal_db_interface,\n",
+    "                                 creation_time=start,\n",
+    "                                 verbosity=0,\n",
+    "                                 timeout=cal_db_timeout,\n",
+    "                                 meta_only=True,\n",
+    "                                 version_info=True)\n",
+    "        \n",
+    "            if not isinstance(data, list) or not isinstance(dataBP, list):\n",
+    "                continue\n",
+    "            print('Number of retrieved darks: {}'.format(len(dataBP)) )\n",
+    "            found_BPmatch = False\n",
+    "            for d in data:\n",
+    "                # Match proper BP constant version\n",
+    "                # and get constant version within\n",
+    "                # requested time range\n",
+    "                if d is None:\n",
+    "                    print('Time or data is not found!')\n",
+    "                    continue\n",
+    "\n",
+    "                dt = dateutil.parser.parse(d['begin_at'])\n",
+    "\n",
+    "                if (dt.replace(tzinfo=None) > end or \n",
+    "                    (nconstants==0 and dt.replace(tzinfo=None) < start)):\n",
+    "                    continue\n",
+    "                    \n",
+    "                if nconstants>0 and constant_parameters.count(pars)>nconstants-1:\n",
+    "                    break\n",
+    "\n",
+    "                closest_BP = None\n",
+    "                closest_BPtime = None\n",
+    "\n",
+    "                for dBP in dataBP:\n",
+    "                    if dBP is None:\n",
+    "                        print(\"Bad pixels are not found!\")\n",
+    "                        continue\n",
+    "\n",
+    "                    dt = dateutil.parser.parse(d['begin_at'])\n",
+    "                    dBPt = dateutil.parser.parse(dBP['begin_at'])\n",
+    "\n",
+    "                    if dt == dBPt:\n",
+    "                        found_BPmatch = True\n",
+    "                    else:\n",
+    "\n",
+    "                        if np.abs(dBPt-dt).seconds < (max_time*60):\n",
+    "                            if closest_BP is None:\n",
+    "                                closest_BP = dBP\n",
+    "                                closest_BPtime = dBPt\n",
+    "                            else:\n",
+    "                                if np.abs(dBPt-dt) < np.abs(closest_BPtime-dt):\n",
+    "                                    closest_BP = dBP\n",
+    "                                    closest_BPtime = dBPt\n",
+    "\n",
+    "                        if dataBP.index(dBP) ==  len(dataBP)-1:\n",
+    "                            if closest_BP:\n",
+    "                                dBP = closest_BP\n",
+    "                                dBPt = closest_BPtime\n",
+    "                                found_BPmatch = True\n",
+    "                            else:\n",
+    "                                print('Bad pixels are not found!')\n",
+    "\n",
+    "                    if found_BPmatch:\n",
+    "                        print(\"Found constant {}: begin at {}\".format(const, dt))\n",
+    "                        print(\"Found bad pixels at {}\".format(dBPt))\n",
+    "                        constantBP_versions.append(dBP)\n",
+    "                        constant_versions.append(d)\n",
+    "                        constant_parameters.append(copy.deepcopy(pars))\n",
+    "                        found_BPmatch = False\n",
+    "                        break\n",
+    "        else:\n",
+    "            constant_versions += data\n",
+    "            constant_parameters += [copy.deepcopy(pars)]*len(data)\n",
+    "\n",
+    "# Remove dublications\n",
+    "constant_versions_tmp = []\n",
+    "constant_parameters_tmp = []\n",
+    "for i, x in enumerate(constant_versions):\n",
+    "    if x not in constant_versions_tmp:\n",
+    "        constant_versions_tmp.append(x)\n",
+    "        constant_parameters_tmp.append(constant_parameters[i])\n",
+    "        \n",
+    "constant_versions=constant_versions_tmp\n",
+    "constant_parameters=constant_parameters_tmp\n",
+    "        \n",
+    "print('Number of stored constant versions is {}'.format(len(constant_versions)))\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def get_rebined(a, rebin):\n",
+    "    return a[:,:,0].reshape(\n",
+    "                int(a.shape[0] / rebin[0]),\n",
+    "                rebin[0],\n",
+    "                int(a.shape[1] / rebin[1]),\n",
+    "                rebin[1])\n",
+    "    \n",
+    "def modify_const(const, data, isBP = False):\n",
+    "    return data\n",
+    "\n",
+    "ret_constants = {}\n",
+    "constand_data = ConstantMetaData()\n",
+    "constant_BP = ConstantMetaData()\n",
+    "for i, constant_version in enumerate(constant_versions):\n",
+    "\n",
+    "    const = constant_version['data_set_name'].split('/')[-2]\n",
+    "    qm = db_module\n",
+    "    \n",
+    "    print(\"constant: {}, module {}\".format(const,qm))\n",
+    "    \n",
+    "    constand_data.retrieve_from_version_info(constant_version)\n",
+    "    \n",
+    "    # Convert parameters to dict\n",
+    "    dpar = {p.name: p.value for p in constand_data.detector_condition.parameters}\n",
+    "    \n",
+    "    const = \"{}_{}_{}_{}\".format(const, \n",
+    "                              constant_parameters[i]['gain_setting'],\n",
+    "                              constant_parameters[i]['temperature'],\n",
+    "                              constant_parameters[i]['integration_time'])\n",
+    "    \n",
+    "    if not const in ret_constants:\n",
+    "        ret_constants[const] = {}\n",
+    "    if not qm in ret_constants[const]:\n",
+    "            ret_constants[const][qm] = []\n",
+    "    \n",
+    "    cdata = constand_data.calibration_constant.data\n",
+    "    ctime = constand_data.calibration_constant_version.begin_at\n",
+    "    \n",
+    "    cdata = modify_const(const, cdata)\n",
+    "    \n",
+    "    if len(constantBP_versions)>0:\n",
+    "        constant_BP.retrieve_from_version_info(constantBP_versions[i])\n",
+    "        cdataBP = constant_BP.calibration_constant.data\n",
+    "        cdataBP = modify_const(const, cdataBP, True)\n",
+    "        \n",
+    "        if cdataBP.shape != cdata.shape:\n",
+    "            print('Wrong bad pixel shape! {}, expected {}'.format(cdataBP.shape, cdata.shape))\n",
+    "            continue\n",
+    "        \n",
+    "        # Apply bad pixel mask\n",
+    "        cdataABP = np.copy(cdata)\n",
+    "        cdataABP[cdataBP > 0] = np.nan\n",
+    "    \n",
+    "        # Create superpixels for constants with BP applied\n",
+    "        cdataABP = get_rebined(cdataABP, spShape)\n",
+    "        toStoreBP = np.nanmean(cdataABP, axis=(1, 3))\n",
+    "        toStoreBPStd = np.nanstd(cdataABP, axis=(1, 3))\n",
+    "\n",
+    "        # Prepare number of bad pixels per superpixels\n",
+    "        cdataBP = get_rebined(cdataBP, spShape)\n",
+    "        cdataNBP = np.nansum(cdataBP > 0, axis=(1, 3))\n",
+    "    else:\n",
+    "        toStoreBP = 0\n",
+    "        toStoreBPStd = 0\n",
+    "        cdataNBP = 0\n",
+    "\n",
+    "    # Create superpixels for constants without BP applied\n",
+    "    cdata = get_rebined(cdata, spShape)\n",
+    "    toStoreStd = np.nanstd(cdata, axis=(1, 3))\n",
+    "    toStore = np.nanmean(cdata, axis=(1, 3))\n",
+    "    \n",
+    "    # Convert parameters to dict\n",
+    "    dpar = {p.name: p.value for p in constand_data.detector_condition.parameters}\n",
+    "    \n",
+    "    print(\"Store values in dict\", const, qm, ctime)\n",
+    "    ret_constants[const][qm].append({'ctime': ctime,\n",
+    "                                     'nBP': cdataNBP,\n",
+    "                                     'dataBP': toStoreBP,\n",
+    "                                     'dataBPStd': toStoreBPStd,\n",
+    "                                     'data': toStore,\n",
+    "                                     'dataStd': toStoreStd,\n",
+    "                                     'mdata': dpar})  \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "if use_existing == \"\":\n",
+    "    print('Save data to /CalDBAna_{}_{}.h5'.format(dclass, db_module))\n",
+    "    save_dict_to_hdf5(ret_constants,\n",
+    "                      '{}/CalDBAna_{}_{}.h5'.format(out_folder, dclass, db_module))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "if use_existing == \"\":\n",
+    "    fpath = '{}/CalDBAna_{}_*.h5'.format(out_folder, dclass)\n",
+    "else:\n",
+    "    fpath = '{}/CalDBAna_{}_*.h5'.format(use_existing, dclass)\n",
+    "\n",
+    "print('Load data from {}'.format(fpath))\n",
+    "ret_constants = load_data_from_hdf5(fpath)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Parameters for plotting\n",
+    "\n",
+    "keys = {\n",
+    "    'Mean': ['data', '', 'Mean over pixels'],\n",
+    "    'std': ['dataStd', '', '$\\sigma$ over pixels'],\n",
+    "    'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n",
+    "    'NBP': ['nBP', 'Fraction of BP', 'Fraction of BP'],\n",
+    "    'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n",
+    "    'stdASIC': ['', '', '$\\sigma$ over ASICs'],\n",
+    "    'stdCell': ['', '', '$\\sigma$ over Cells'],\n",
+    "}\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "print('Plot calibration constants')\n",
+    "\n",
+    "# loop over constat type\n",
+    "for const, modules in ret_constants.items():\n",
+    "\n",
+    "        const, gain, temp, int_time = const.split(\"_\")\n",
+    "        print('Const: {}'.format(const))\n",
+    "\n",
+    "        # loop over modules\n",
+    "        mod_data = {}\n",
+    "        mod_data['stdASIC'] = []\n",
+    "        mod_data['stdCell'] = []\n",
+    "        mod_names = []\n",
+    "        mod_times = []\n",
+    "\n",
+    "        # Loop over modules\n",
+    "        for mod, data in modules.items():\n",
+    "            print(mod)\n",
+    "\n",
+    "            ctimes = np.array(data[\"ctime\"])\n",
+    "            ctimes_ticks = [x.strftime('%y-%m-%d') for x in ctimes]\n",
+    "\n",
+    "            if (\"mdata\" in data):\n",
+    "                cmdata = np.array(data[\"mdata\"])\n",
+    "                for i, tick in enumerate(ctimes_ticks):\n",
+    "                    ctimes_ticks[i] = ctimes_ticks[i] + \\\n",
+    "                        ', V={:1.0f}'.format(cmdata[i]['Sensor Temperature']) + \\\n",
+    "                        ', T={:1.0f}'.format(\n",
+    "                        cmdata[i]['Integration Time'])\n",
+    "\n",
+    "            sort_ind = np.argsort(ctimes_ticks)\n",
+    "            ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n",
+    "\n",
+    "            # Create sorted by data dataset\n",
+    "            rdata = {}\n",
+    "            for key, item in keys.items():\n",
+    "                if item[0] in data:\n",
+    "                    rdata[key] = np.array(data[item[0]])[sort_ind]\n",
+    "\n",
+    "            nTimes = rdata['Mean'].shape[0]\n",
+    "            nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n",
+    "            nBins = nPixels\n",
+    "\n",
+    "            # Avoid to low values\n",
+    "            if const in [\"Noise\", \"Offset\", \"Noise-e\"]:\n",
+    "                rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n",
+    "                if 'MeanBP' in rdata:\n",
+    "                    rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n",
+    "                    \n",
+    "            if 'NBP' in rdata:\n",
+    "                rdata[\"NBP\"] = rdata[\"NBP\"] / spShape[0] / spShape[1] * 100\n",
+    "\n",
+    "            # Reshape: ASICs over cells for plotting\n",
+    "            pdata = {}\n",
+    "            for key in rdata:\n",
+    "                if len(rdata[key].shape)<3:\n",
+    "                    continue\n",
+    "                pdata[key] = rdata[key][:, :, :].reshape(nTimes, nBins).swapaxes(0, 1)\n",
+    "\n",
+    "            # Summary over ASICs\n",
+    "            adata = {}\n",
+    "            for key in rdata:\n",
+    "                if len(rdata[key].shape)<3:\n",
+    "                    continue\n",
+    "                adata[key] = np.nanmean(rdata[key], axis=(1, 2))\n",
+    "\n",
+    "            # Summary information over modules\n",
+    "            for key in pdata:\n",
+    "                if key not in mod_data:\n",
+    "                    mod_data[key] = []\n",
+    "                mod_data[key].append(np.nanmean(pdata[key], axis=0))\n",
+    "\n",
+    "            mod_data['stdASIC'].append(np.nanstd(rdata['Mean'], axis=(1, 2)))\n",
+    "\n",
+    "            mod_names.append(mod)\n",
+    "            mod_times.append(ctimes_ticks)\n",
+    "\n",
+    "            # Plotting\n",
+    "            for key in pdata:\n",
+    "                if len(pdata[key].shape)<2:\n",
+    "                    continue\n",
+    "\n",
+    "                if key == 'NBP':\n",
+    "                    unit = '[%]'\n",
+    "                else:\n",
+    "                    unit = '[ADU]'\n",
+    "                    if const == 'Noise-e':\n",
+    "                        unit = '[$e^-$]'\n",
+    "\n",
+    "                title = '{}, module {}, gain {} {}'.format(\n",
+    "                    const, mod, gain, keys[key][1])\n",
+    "                cb_label = '{}, {} {}'.format(const, keys[key][2], unit)\n",
+    "\n",
+    "                vmin,vmax = get_range(pdata[key][::-1].flatten(), plot_range)\n",
+    "                hm_combine(pdata[key][::-1], htype=HMType.mro,\n",
+    "                          x_label='Creation Time', y_label='ASIC ID',\n",
+    "                          x_ticklabels=ctimes_ticks,\n",
+    "                          x_ticks=np.arange(len(ctimes_ticks))+0.3,\n",
+    "                          title=title, cb_label=cb_label,\n",
+    "                          vmin=vmin, vmax=vmax,\n",
+    "                          fname='{}/{}_{}_g{}_t{}_t{}_ASIC_{}.png'.format(\n",
+    "                                  out_folder, const, mod.replace('_', ''), gain, temp, int_time, key),\n",
+    "                          pad=[0.125, 0.125, 0.12, 0.185])\n"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/xfel_calibrate/notebooks.py b/xfel_calibrate/notebooks.py
index 71da69695..fe9df1c8a 100644
--- a/xfel_calibrate/notebooks.py
+++ b/xfel_calibrate/notebooks.py
@@ -129,6 +129,12 @@ notebooks = {
                                                "use function": "balance_sequences",
                                                "cluster cores": 4},
                                 },
+                       "STATS_FROM_DB":   {
+                               "notebook": "notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb",
+                               "concurrency": {"parameter": None,
+                                                "default concurrency": None,
+                                                "cluster cores": 1},
+                               },
                        },
              "JUNGFRAU": {
                         "DARK": {
-- 
GitLab