From 6d1aa45d127f95d4bfe8e23f1ef832b2413b35d4 Mon Sep 17 00:00:00 2001 From: karnem <mikhail.karnevskiy@desy.de> Date: Fri, 30 Aug 2019 15:55:30 +0200 Subject: [PATCH] Add plotting constants of FCCD --- cal_tools/cal_tools/ana_tools.py | 14 + .../FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb | 531 ++++++++++++++++++ xfel_calibrate/notebooks.py | 6 + 3 files changed, 551 insertions(+) create mode 100644 notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb diff --git a/cal_tools/cal_tools/ana_tools.py b/cal_tools/cal_tools/ana_tools.py index f58ace59b..dce75cf70 100644 --- a/cal_tools/cal_tools/ana_tools.py +++ b/cal_tools/cal_tools/ana_tools.py @@ -352,6 +352,20 @@ class HMType(Enum): INSET_AXIS = 2 +def get_range(data, scale): + """ + Get range, which includes most of the data points. + Range is calculated in units of median absolute deviations + + :param data: numpy.array of data points + :param scale: range in units of median absolute deviations + :return: + """ + med = np.nanmedian(data) + mad = np.nanmedian(np.abs(data.flatten() - med)) + return med - scale * mad, med + scale * mad + + def hm_combine(data, fname=None, htype=None, **kwargs): """ Plot heatmap for calibration report diff --git a/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb b/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb new file mode 100644 index 000000000..406e88e09 --- /dev/null +++ b/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb @@ -0,0 +1,531 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Statistical analysis of calibration factors#\n", + "\n", + "Author: Mikhail Karnevskiy, Steffen Hauf, Version 0.1\n", + "\n", + "A description of the notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cluster_profile = \"noDB\" # The ipcluster profile to use\n", + "start_date = \"2019-01-30\" # date to start investigation interval from\n", + "end_date = \"2019-08-30\" # date to end investigation interval at, can be \"now\"\n", + "nconstants = 10 # Number of time stamps to plot. If not 0, overcome start_date.\n", + "dclass=\"CCD\" # Detector class\n", + "db_module = \"fastCCD1\" # detector entry in the DB to investigate\n", + "constants = [\"Noise\"]#, \"Offset\"] # constants to plot\n", + "\n", + "gain_setting = [0,1,2,8] # gain stages\n", + "bias_voltage = [79] # Bias voltage\n", + "temperature = [235]#, 216, 245] # Operation temperature\n", + "integration_time = [1, 50] # Integration time\n", + "pixels_x=[1934]\n", + "pixels_y=[960]\n", + "max_time = 15\n", + "parameter_names = ['bias_voltage', 'integration_time', 'temperature', \n", + " 'gain_setting', 'pixels_x', 'pixels_y'] # names of parameters\n", + "photon_energy = 9.2 # Photon energy of the beam\n", + "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_FCCD5/\" # output folder\n", + "use_existing = \"\" # If not empty, constants stored in given folder will be used\n", + "cal_db_interface = \"tcp://max-exfl016:8015#8025\" # the database interface to use\n", + "cal_db_timeout = 180000 # timeout on caldb requests\",\n", + "plot_range = 3 # range for plotting in units of median absolute deviations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "import copy\n", + "import datetime\n", + "import dateutil.parser\n", + "import numpy as np\n", + "from operator import itemgetter\n", + "import os\n", + "import sys\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "import h5py\n", + "import matplotlib\n", + "%matplotlib inline\n", + "\n", + "from iCalibrationDB import Constants, Conditions, Detectors, ConstantMetaData\n", + "from cal_tools.tools import get_from_db, get_random_db_interface\n", + "from cal_tools.ana_tools import (save_dict_to_hdf5, load_data_from_hdf5, \n", + " combine_constants, HMType,\n", + " hm_combine, combine_lists, get_range)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Prepare variables\n", + "spShape = (967, 10) # Shape of superpixel\n", + "\n", + "parameters = [globals()[x] for x in parameter_names]\n", + "\n", + "constantsDark = {'Noise': 'BadPixelsDark',\n", + " 'Offset': 'BadPixelsDark'}\n", + "print('Bad pixels data: ', constantsDark)\n", + "\n", + "# Define parameters in order to perform loop over time stamps\n", + "start = datetime.datetime.now() if start_date.upper() == \"NOW\" else dateutil.parser.parse(\n", + " start_date)\n", + "end = datetime.datetime.now() if end_date.upper() == \"NOW\" else dateutil.parser.parse(\n", + " end_date)\n", + "\n", + "# Create output folder\n", + "os.makedirs(out_folder, exist_ok=True)\n", + "\n", + "# Get getector conditions\n", + "det = getattr(Detectors, db_module)\n", + "dconstants = getattr(Constants, dclass)(det.detector_type)\n", + "\n", + "print('CalDB Interface: {}'.format(cal_db_interface))\n", + "print('Start time at: ', start)\n", + "print('End time at: ', end)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "parameter_list = combine_lists(*parameters, names = parameter_names)\n", + "print(parameter_list)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# Retrieve list of meta-data\n", + "constant_versions = []\n", + "constant_parameters = []\n", + "constantBP_versions = []\n", + "\n", + "# Loop over constants\n", + "for c, const in enumerate(constants):\n", + " \n", + " if use_existing != \"\":\n", + " break\n", + " \n", + " # Loop over parameters\n", + " for pars in parameter_list:\n", + " \n", + " if (const in [\"Offset\", \"Noise\", \"SlopesPC\"] or \"DARK\" in const.upper()):\n", + " dcond = Conditions.Dark\n", + " mcond = getattr(dcond, dclass)(**pars)\n", + " else:\n", + " dcond = Conditions.Illuminated\n", + " mcond = getattr(dcond, dclass)(**pars,\n", + " photon_energy=photon_energy)\n", + "\n", + " \n", + " \n", + " print('Request: ', const, 'with paramters:', pars)\n", + " # Request Constant versions for given parameters and module\n", + " data = get_from_db(det,\n", + " getattr(dconstants,\n", + " const)(),\n", + " copy.deepcopy(mcond), None,\n", + " cal_db_interface,\n", + " creation_time=start,\n", + " verbosity=0,\n", + " timeout=cal_db_timeout,\n", + " meta_only=True,\n", + " version_info=True)\n", + " \n", + " if not isinstance(data, list):\n", + " continue\n", + " \n", + " data = sorted(data, key=itemgetter('begin_at'))\n", + " print('Number of retrieved constants: {}'.format(len(data)) )\n", + " \n", + " if const in constantsDark:\n", + " # Request BP constant versions\n", + " dataBP = get_from_db(det,\n", + " getattr(dconstants, \n", + " constantsDark[const])(),\n", + " copy.deepcopy(mcond), None,\n", + " cal_db_interface,\n", + " creation_time=start,\n", + " verbosity=0,\n", + " timeout=cal_db_timeout,\n", + " meta_only=True,\n", + " version_info=True)\n", + " \n", + " if not isinstance(data, list) or not isinstance(dataBP, list):\n", + " continue\n", + " print('Number of retrieved darks: {}'.format(len(dataBP)) )\n", + " found_BPmatch = False\n", + " for d in data:\n", + " # Match proper BP constant version\n", + " # and get constant version within\n", + " # requested time range\n", + " if d is None:\n", + " print('Time or data is not found!')\n", + " continue\n", + "\n", + " dt = dateutil.parser.parse(d['begin_at'])\n", + "\n", + " if (dt.replace(tzinfo=None) > end or \n", + " (nconstants==0 and dt.replace(tzinfo=None) < start)):\n", + " continue\n", + " \n", + " if nconstants>0 and constant_parameters.count(pars)>nconstants-1:\n", + " break\n", + "\n", + " closest_BP = None\n", + " closest_BPtime = None\n", + "\n", + " for dBP in dataBP:\n", + " if dBP is None:\n", + " print(\"Bad pixels are not found!\")\n", + " continue\n", + "\n", + " dt = dateutil.parser.parse(d['begin_at'])\n", + " dBPt = dateutil.parser.parse(dBP['begin_at'])\n", + "\n", + " if dt == dBPt:\n", + " found_BPmatch = True\n", + " else:\n", + "\n", + " if np.abs(dBPt-dt).seconds < (max_time*60):\n", + " if closest_BP is None:\n", + " closest_BP = dBP\n", + " closest_BPtime = dBPt\n", + " else:\n", + " if np.abs(dBPt-dt) < np.abs(closest_BPtime-dt):\n", + " closest_BP = dBP\n", + " closest_BPtime = dBPt\n", + "\n", + " if dataBP.index(dBP) == len(dataBP)-1:\n", + " if closest_BP:\n", + " dBP = closest_BP\n", + " dBPt = closest_BPtime\n", + " found_BPmatch = True\n", + " else:\n", + " print('Bad pixels are not found!')\n", + "\n", + " if found_BPmatch:\n", + " print(\"Found constant {}: begin at {}\".format(const, dt))\n", + " print(\"Found bad pixels at {}\".format(dBPt))\n", + " constantBP_versions.append(dBP)\n", + " constant_versions.append(d)\n", + " constant_parameters.append(copy.deepcopy(pars))\n", + " found_BPmatch = False\n", + " break\n", + " else:\n", + " constant_versions += data\n", + " constant_parameters += [copy.deepcopy(pars)]*len(data)\n", + "\n", + "# Remove dublications\n", + "constant_versions_tmp = []\n", + "constant_parameters_tmp = []\n", + "for i, x in enumerate(constant_versions):\n", + " if x not in constant_versions_tmp:\n", + " constant_versions_tmp.append(x)\n", + " constant_parameters_tmp.append(constant_parameters[i])\n", + " \n", + "constant_versions=constant_versions_tmp\n", + "constant_parameters=constant_parameters_tmp\n", + " \n", + "print('Number of stored constant versions is {}'.format(len(constant_versions)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_rebined(a, rebin):\n", + " return a[:,:,0].reshape(\n", + " int(a.shape[0] / rebin[0]),\n", + " rebin[0],\n", + " int(a.shape[1] / rebin[1]),\n", + " rebin[1])\n", + " \n", + "def modify_const(const, data, isBP = False):\n", + " return data\n", + "\n", + "ret_constants = {}\n", + "constand_data = ConstantMetaData()\n", + "constant_BP = ConstantMetaData()\n", + "for i, constant_version in enumerate(constant_versions):\n", + "\n", + " const = constant_version['data_set_name'].split('/')[-2]\n", + " qm = db_module\n", + " \n", + " print(\"constant: {}, module {}\".format(const,qm))\n", + " \n", + " constand_data.retrieve_from_version_info(constant_version)\n", + " \n", + " # Convert parameters to dict\n", + " dpar = {p.name: p.value for p in constand_data.detector_condition.parameters}\n", + " \n", + " const = \"{}_{}_{}_{}\".format(const, \n", + " constant_parameters[i]['gain_setting'],\n", + " constant_parameters[i]['temperature'],\n", + " constant_parameters[i]['integration_time'])\n", + " \n", + " if not const in ret_constants:\n", + " ret_constants[const] = {}\n", + " if not qm in ret_constants[const]:\n", + " ret_constants[const][qm] = []\n", + " \n", + " cdata = constand_data.calibration_constant.data\n", + " ctime = constand_data.calibration_constant_version.begin_at\n", + " \n", + " cdata = modify_const(const, cdata)\n", + " \n", + " if len(constantBP_versions)>0:\n", + " constant_BP.retrieve_from_version_info(constantBP_versions[i])\n", + " cdataBP = constant_BP.calibration_constant.data\n", + " cdataBP = modify_const(const, cdataBP, True)\n", + " \n", + " if cdataBP.shape != cdata.shape:\n", + " print('Wrong bad pixel shape! {}, expected {}'.format(cdataBP.shape, cdata.shape))\n", + " continue\n", + " \n", + " # Apply bad pixel mask\n", + " cdataABP = np.copy(cdata)\n", + " cdataABP[cdataBP > 0] = np.nan\n", + " \n", + " # Create superpixels for constants with BP applied\n", + " cdataABP = get_rebined(cdataABP, spShape)\n", + " toStoreBP = np.nanmean(cdataABP, axis=(1, 3))\n", + " toStoreBPStd = np.nanstd(cdataABP, axis=(1, 3))\n", + "\n", + " # Prepare number of bad pixels per superpixels\n", + " cdataBP = get_rebined(cdataBP, spShape)\n", + " cdataNBP = np.nansum(cdataBP > 0, axis=(1, 3))\n", + " else:\n", + " toStoreBP = 0\n", + " toStoreBPStd = 0\n", + " cdataNBP = 0\n", + "\n", + " # Create superpixels for constants without BP applied\n", + " cdata = get_rebined(cdata, spShape)\n", + " toStoreStd = np.nanstd(cdata, axis=(1, 3))\n", + " toStore = np.nanmean(cdata, axis=(1, 3))\n", + " \n", + " # Convert parameters to dict\n", + " dpar = {p.name: p.value for p in constand_data.detector_condition.parameters}\n", + " \n", + " print(\"Store values in dict\", const, qm, ctime)\n", + " ret_constants[const][qm].append({'ctime': ctime,\n", + " 'nBP': cdataNBP,\n", + " 'dataBP': toStoreBP,\n", + " 'dataBPStd': toStoreBPStd,\n", + " 'data': toStore,\n", + " 'dataStd': toStoreStd,\n", + " 'mdata': dpar}) \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "if use_existing == \"\":\n", + " print('Save data to /CalDBAna_{}_{}.h5'.format(dclass, db_module))\n", + " save_dict_to_hdf5(ret_constants,\n", + " '{}/CalDBAna_{}_{}.h5'.format(out_folder, dclass, db_module))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if use_existing == \"\":\n", + " fpath = '{}/CalDBAna_{}_*.h5'.format(out_folder, dclass)\n", + "else:\n", + " fpath = '{}/CalDBAna_{}_*.h5'.format(use_existing, dclass)\n", + "\n", + "print('Load data from {}'.format(fpath))\n", + "ret_constants = load_data_from_hdf5(fpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameters for plotting\n", + "\n", + "keys = {\n", + " 'Mean': ['data', '', 'Mean over pixels'],\n", + " 'std': ['dataStd', '', '$\\sigma$ over pixels'],\n", + " 'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n", + " 'NBP': ['nBP', 'Fraction of BP', 'Fraction of BP'],\n", + " 'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n", + " 'stdASIC': ['', '', '$\\sigma$ over ASICs'],\n", + " 'stdCell': ['', '', '$\\sigma$ over Cells'],\n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print('Plot calibration constants')\n", + "\n", + "# loop over constat type\n", + "for const, modules in ret_constants.items():\n", + "\n", + " const, gain, temp, int_time = const.split(\"_\")\n", + " print('Const: {}'.format(const))\n", + "\n", + " # loop over modules\n", + " mod_data = {}\n", + " mod_data['stdASIC'] = []\n", + " mod_data['stdCell'] = []\n", + " mod_names = []\n", + " mod_times = []\n", + "\n", + " # Loop over modules\n", + " for mod, data in modules.items():\n", + " print(mod)\n", + "\n", + " ctimes = np.array(data[\"ctime\"])\n", + " ctimes_ticks = [x.strftime('%y-%m-%d') for x in ctimes]\n", + "\n", + " if (\"mdata\" in data):\n", + " cmdata = np.array(data[\"mdata\"])\n", + " for i, tick in enumerate(ctimes_ticks):\n", + " ctimes_ticks[i] = ctimes_ticks[i] + \\\n", + " ', V={:1.0f}'.format(cmdata[i]['Sensor Temperature']) + \\\n", + " ', T={:1.0f}'.format(\n", + " cmdata[i]['Integration Time'])\n", + "\n", + " sort_ind = np.argsort(ctimes_ticks)\n", + " ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n", + "\n", + " # Create sorted by data dataset\n", + " rdata = {}\n", + " for key, item in keys.items():\n", + " if item[0] in data:\n", + " rdata[key] = np.array(data[item[0]])[sort_ind]\n", + "\n", + " nTimes = rdata['Mean'].shape[0]\n", + " nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n", + " nBins = nPixels\n", + "\n", + " # Avoid to low values\n", + " if const in [\"Noise\", \"Offset\", \"Noise-e\"]:\n", + " rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n", + " if 'MeanBP' in rdata:\n", + " rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n", + " \n", + " if 'NBP' in rdata:\n", + " rdata[\"NBP\"] = rdata[\"NBP\"] / spShape[0] / spShape[1] * 100\n", + "\n", + " # Reshape: ASICs over cells for plotting\n", + " pdata = {}\n", + " for key in rdata:\n", + " if len(rdata[key].shape)<3:\n", + " continue\n", + " pdata[key] = rdata[key][:, :, :].reshape(nTimes, nBins).swapaxes(0, 1)\n", + "\n", + " # Summary over ASICs\n", + " adata = {}\n", + " for key in rdata:\n", + " if len(rdata[key].shape)<3:\n", + " continue\n", + " adata[key] = np.nanmean(rdata[key], axis=(1, 2))\n", + "\n", + " # Summary information over modules\n", + " for key in pdata:\n", + " if key not in mod_data:\n", + " mod_data[key] = []\n", + " mod_data[key].append(np.nanmean(pdata[key], axis=0))\n", + "\n", + " mod_data['stdASIC'].append(np.nanstd(rdata['Mean'], axis=(1, 2)))\n", + "\n", + " mod_names.append(mod)\n", + " mod_times.append(ctimes_ticks)\n", + "\n", + " # Plotting\n", + " for key in pdata:\n", + " if len(pdata[key].shape)<2:\n", + " continue\n", + "\n", + " if key == 'NBP':\n", + " unit = '[%]'\n", + " else:\n", + " unit = '[ADU]'\n", + " if const == 'Noise-e':\n", + " unit = '[$e^-$]'\n", + "\n", + " title = '{}, module {}, gain {} {}'.format(\n", + " const, mod, gain, keys[key][1])\n", + " cb_label = '{}, {} {}'.format(const, keys[key][2], unit)\n", + "\n", + " vmin,vmax = get_range(pdata[key][::-1].flatten(), plot_range)\n", + " hm_combine(pdata[key][::-1], htype=HMType.mro,\n", + " x_label='Creation Time', y_label='ASIC ID',\n", + " x_ticklabels=ctimes_ticks,\n", + " x_ticks=np.arange(len(ctimes_ticks))+0.3,\n", + " title=title, cb_label=cb_label,\n", + " vmin=vmin, vmax=vmax,\n", + " fname='{}/{}_{}_g{}_t{}_t{}_ASIC_{}.png'.format(\n", + " out_folder, const, mod.replace('_', ''), gain, temp, int_time, key),\n", + " pad=[0.125, 0.125, 0.12, 0.185])\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/xfel_calibrate/notebooks.py b/xfel_calibrate/notebooks.py index 71da69695..fe9df1c8a 100644 --- a/xfel_calibrate/notebooks.py +++ b/xfel_calibrate/notebooks.py @@ -129,6 +129,12 @@ notebooks = { "use function": "balance_sequences", "cluster cores": 4}, }, + "STATS_FROM_DB": { + "notebook": "notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb", + "concurrency": {"parameter": None, + "default concurrency": None, + "cluster cores": 1}, + }, }, "JUNGFRAU": { "DARK": { -- GitLab