diff --git a/notebooks/LPD/LPDChar_Darks_NBC.ipynb b/notebooks/LPD/LPDChar_Darks_NBC.ipynb index 050dafc9fc0db493e5a051681fb645857f6755e7..1c17b282be509aff6c370a8ab6254a5d7294b3dc 100644 --- a/notebooks/LPD/LPDChar_Darks_NBC.ipynb +++ b/notebooks/LPD/LPDChar_Darks_NBC.ipynb @@ -82,7 +82,7 @@ "instrument = \"FXE\" # instrument name\n", "ntrains = 300 # number of trains to use\n", "high_res_badpix_3d = False # plot bad-pixel summary in high resolution\n", - "do_norm_test = False # permorm normality test" + "test_for_normality = False # permorm normality test" ] }, { @@ -212,7 +212,7 @@ "outputs": [], "source": [ "# the actual characterization - to not eded this without consultation\n", - "def characterize_module(cells, bp_thresh, skip_first_ntrains, ntrains, do_norm_test, inp):\n", + "def characterize_module(cells, bp_thresh, skip_first_ntrains, ntrains, test_for_normality, inp):\n", " import numpy as np\n", " import copy\n", " import h5py\n", @@ -228,17 +228,19 @@ " gain[gain > 2] = 2\n", " return data, gain\n", "\n", - " filename, filename_out, channel = inp\n", + " filename, channel, gg, cap = inp\n", " thresholds_offset_hard, thresholds_offset_sigma, thresholds_noise_hard, thresholds_noise_sigma = bp_thresh\n", "\n", " infile = h5py.File(filename, \"r\", driver=\"core\")\n", " \n", - " first = np.array(infile[\"/INDEX/FXE_DET_LPD1M-1/DET/{}CH0:xtdf/image/first\".format(channel)])\n", - " count = np.array(infile[\"/INDEX/FXE_DET_LPD1M-1/DET/{}CH0:xtdf/image/count\".format(channel)])\n", - " n_images = count[-1]+first[-1]\n", - " first_image = skip_first_ntrains*cells\n", - " last_image = min(skip_first_ntrains*cells+ntrains*cells, n_images)\n", - " \n", + " bpath = \"/INDEX/FXE_DET_LPD1M-1/DET/{}CH0:xtdf/image\".format(channel)\n", + " count = infile[f\"{bpath}/count\"][()]\n", + " first = infile[f\"{bpath}/first\"][()]\n", + " valid = count != 0\n", + " count, first = count[valid], first[valid]\n", + " first_image = first[skip_first_ntrains]\n", + " last_image = min(first[-1]+count[-1], first_image+ntrains*count[-1])\n", + "\n", " im = np.array(infile[\"/INSTRUMENT/FXE_DET_LPD1M-1/DET/{}CH0:xtdf/image/data\".format(\n", " channel)][first_image:last_image, ...])\n", " cellid = np.squeeze(np.array(infile[\"/INSTRUMENT/FXE_DET_LPD1M-1/DET/{}CH0:xtdf/image/cellId\".format(\n", @@ -260,7 +262,7 @@ "\n", " offset[..., cc] = np.median(im[:, :, idx], axis=2)\n", " noise[..., cc] = np.std(im[:, :, idx], axis=2)\n", - " if do_norm_test:\n", + " if test_for_normality:\n", " _, normal_test[..., cc] = scipy.stats.normaltest(\n", " im[:, :, idx], axis=2)\n", "\n", @@ -287,7 +289,7 @@ " bp[~np.isfinite(noise)] |= BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n", "\n", " idx = cellid == 12\n", - " return offset, noise, channel, bp, im[12, 12, idx], normal_test\n", + " return offset, noise, channel, gg, cap, bp, im[12, 12, idx], normal_test\n", "\n", "\n", "offset_g = OrderedDict()\n", @@ -297,7 +299,6 @@ "ntest_g = OrderedDict()\n", "\n", "gg = 0\n", - "pars = []\n", "old_cap = None\n", "start = datetime.now()\n", "inp = []\n", @@ -317,11 +318,8 @@ " qm = \"Q{}M{}\".format(i//4 + 1, i % 4 + 1)\n", " if qm in mapped_files and not mapped_files[qm].empty():\n", " fname_in = mapped_files[qm].get()\n", - " fout = os.path.abspath(\n", - " \"{}/{}\".format(out_folder, (os.path.split(fname_in)[-1]).replace(\"RAW\", \"CORR\")))\n", - " print(\"Process file: \", fout)\n", - " inp.append((fname_in, fout, i))\n", - " pars.append((gg, cap))\n", + " print(\"Process file: \", fname_in)\n", + " inp.append((fname_in, i, gg, cap))\n", "\n", " gg+=1\n", "\n", @@ -329,13 +327,12 @@ "p = partial(characterize_module, max_cells,\n", " (thresholds_offset_hard, thresholds_offset_sigma,\n", " thresholds_noise_hard, thresholds_noise_sigma),\n", - " skip_first_ntrains, ntrains, do_norm_test)\n", + " skip_first_ntrains, ntrains, test_for_normality)\n", "results = view.map_sync(p, inp)\n", "\n", "for ir, r in enumerate(results):\n", - " offset, noise, i, bp, data, normal = r\n", + " offset, noise, i, gg, cap, bp, data, normal = r\n", " qm = \"Q{}M{}\".format(i//4 + 1, i % 4 + 1)\n", - " gg, cap = pars[ir]\n", " if qm not in offset_g[cap]:\n", " offset_g[cap][qm] = np.zeros(\n", " (offset.shape[0], offset.shape[1], offset.shape[2], 3))\n", @@ -645,8 +642,8 @@ "source": [ "# Loop over capacitor settings, modules, constants\n", "for cap in capacitor_settings:\n", - " if not do_norm_test:\n", - " print('Normality test was not requested. Flag `do_norm_test` False')\n", + " if not test_for_normality:\n", + " print('Normality test was not requested. Flag `test_for_normality` False')\n", " break\n", " for i in modules:\n", " qm = \"Q{}M{}\".format(i//4+1, i%4+1)\n",