diff --git a/cal_tools/cal_tools/agipdlib.py b/cal_tools/cal_tools/agipdlib.py index 5d0263b11bc5fea27327891d607b9cdf600fc3de..919025af8dfee77260fc494f6434869b21512d1e 100644 --- a/cal_tools/cal_tools/agipdlib.py +++ b/cal_tools/cal_tools/agipdlib.py @@ -2,23 +2,23 @@ import copy from enum import Enum import h5py +from iCalibrationDB import Constants, Conditions, Detectors import numpy as np from scipy.signal import cwt, ricker from sklearn.mixture import GaussianMixture from sklearn.preprocessing import StandardScaler from cal_tools.enums import BadPixels -from cal_tools.tools import get_constant_from_db -from iCalibrationDB import Constants, Conditions, Detectors +from cal_tools.tools import get_constant_from_db, get_constant_from_db_and_time def get_num_cells(fname, loc, module): with h5py.File(fname, "r") as f: - - cells = f["INSTRUMENT/{}/DET/{}CH0:xtdf/image/cellId".format(loc, module)][:352] + cells = \ + f["INSTRUMENT/{}/DET/{}CH0:xtdf/image/cellId".format(loc, module)][()] maxcell = np.max(cells) options = [4, 32, 64, 76, 128, 176] - dists = [abs(o-maxcell) for o in options] + dists = [abs(o - maxcell) for o in options] return options[np.argmin(dists)] @@ -65,7 +65,8 @@ class AgipdCorrections: h5_index_path="INDEX/SPB_DET_AGIPD1M-1/DET/{}CH0:xtdf/", do_rel_gain=True, chunk_size_idim=512, il_mode=False, cal_det_instance="AGIPD1M1", karabo_data_mode=False, - force_hg_if_below=None, force_mg_if_below=None, mask_noisy_adc=False): + force_hg_if_below=None, force_mg_if_below=None, + mask_noisy_adc=False, adjust_mg_baseline=False): """ Initialize an AgipdCorrections Class @@ -134,16 +135,18 @@ class AgipdCorrections: self.mask_noisy_adc = mask_noisy_adc self.adc_mask = None self.gain_stats = [0, 0, 0] + self.adjust_mg_baseline = adjust_mg_baseline + self.mg_bl_adjust = 0 def get_iteration_range(self): """Returns a range expression over which to iterate in chunks """ splitlength = self.firange.size // self.chunksize splits = np.arange(0, self.firange.size, self.chunksize) - return [ a for a in np.array_split(self.firange, splits) if a.size > 0] + return [a for a in np.array_split(self.firange, splits) if a.size > 0] def initialize(self, offset, rel_gain, mask, noise, thresholds, - base_offset, swap_axis=True): + base_offset, slopesPC=None, swap_axis=True): """ Initialize the calibration constants and the output data file. Any data that is not touched by the corrections is copied into the @@ -183,8 +186,13 @@ class AgipdCorrections: mvd = np.moveaxis(np.moveaxis(noise, 2, 0), 2, 1) noise = np.ascontiguousarray(mvd) if base_offset is not None: + fallback_bo = np.nanmedian(np.array( + [b for b in base_offset if isinstance(b, np.ndarray)]), + axis=0) for i in range(len(base_offset)): if base_offset[i] is not None: + if not isinstance(base_offset[i], np.ndarray): + base_offset[i] = fallback_bo mvd = np.moveaxis(base_offset[i], 2, 0) mvd = np.moveaxis(mvd, 2, 1) base_offset[i] = np.ascontiguousarray(mvd) @@ -221,7 +229,7 @@ class AgipdCorrections: for i in range(8): for j in range(2): asico = self.offset[:, i * 64:(i + 1) * 64, - j * 64:(j + 1) * 64, 0] + j * 64:(j + 1) * 64, 0] asic_m = np.nanmedian(asico, axis=(1, 2)) global_m = np.nanmedian(self.offset[:, ..., 0], axis=(1, 2)) @@ -241,6 +249,27 @@ class AgipdCorrections: self.offset[..., 1] += doff + if self.adjust_mg_baseline and slopesPC is not None: + x = np.linspace(0, 1000, 1000) + m_h = np.moveaxis( + np.moveaxis(slopesPC[..., :self.max_cells, 0], 0, 2), 0, 1) + b_h = np.moveaxis( + np.moveaxis(slopesPC[..., :self.max_cells, 1], 0, 2), 0, 1) + m_m = np.moveaxis( + np.moveaxis(slopesPC[..., :self.max_cells, 3], 0, 2), 0, 1) + b_m = np.moveaxis( + np.moveaxis(slopesPC[..., :self.max_cells, 4], 0, 2), 0, 1) + b_ho = self.offset[..., 0] + b_mo = self.offset[..., 1] + mz = -(b_m - b_mo) / m_m + cx = np.zeros(mz.shape) + for i in range(cx.shape[0]): + for j in range(cx.shape[1]): + for k in range(cx.shape[2]): + cx[i, j, k] = x[np.argmin(np.abs(mz[i, j, k] - x))] + doz = (m_h * cx + b_h - m_m * cx - b_m) + self.mg_bl_adjust = doz + # this is the first call, usually from the database # we also generate file structures here, as the second call is optional if not self.initialized: @@ -272,7 +301,7 @@ class AgipdCorrections: """ Split gain information off AGIPD Data """ return d[:, 0, ...], d[:, 1, ...] - + def split_gain_il(self, d): """ Split gain information off AGIPD IL Data """ @@ -534,9 +563,9 @@ class AgipdCorrections: cme, cms = hist_ends(casic[idxm]) asic = d[(i + 1) * 64 - rsize:(i + 1) * 64 - 1, - 64 - rsize:64].flatten() + 64 - rsize:64].flatten() asic_g = g[(i + 1) * 64 - rsize:(i + 1) * 64 - 1, - 64 - rsize:64].flatten() + 64 - rsize:64].flatten() idxm = asic_g == 1 me, ms = hist_ends(asic[idxm]) @@ -648,9 +677,9 @@ class AgipdCorrections: for j in range(2): fidx = gain[k, i * 64:(i + 1) * 64, - j * 64:(j + 1) * 64] == 1 + j * 64:(j + 1) * 64] == 1 fidx_h = gain[k, i * 64:(i + 1) * 64, - j * 64:(j + 1) * 64] == 0 + j * 64:(j + 1) * 64] == 0 # need at least two pixels in medium gain to be able to # cluster in two groups @@ -705,7 +734,7 @@ class AgipdCorrections: asic = im[k, i * 64:(i + 1) * 64, j * 64:(j + 1) * 64] asic_msk = snow_mask[k, i * 64:(i + 1) * 64, - j * 64:(j + 1) * 64] + j * 64:(j + 1) * 64] mim = asic[fidx] asicb = bg_h mimb = asicb[fidx] @@ -747,24 +776,29 @@ class AgipdCorrections: im[k, i * 64:(i + 1) * 64, j * 64:(j + 1) * 64] = asic gain[k, i * 64:(i + 1) * 64, j * 64:(j + 1) * 64] = asic_g snow_mask[k, i * 64:(i + 1) * 64, - j * 64:(j + 1) * 64] = asic_msk + j * 64:(j + 1) * 64] = asic_msk return im, gain, snow_mask - + def make_noisy_adc_mask(self, bmask): """ Mask entire ADC if they are noise above a relative threshold - """ - msk = np.count_nonzero(((bmask & BadPixels.NOISE_OUT_OF_THRESHOLD.value != 0) - | (bmask & BadPixels.OFFSET_NOISE_EVAL_ERROR.value != 0)).astype(np.int) , axis=0) + """ + msk = np.count_nonzero( + ((bmask & BadPixels.NOISE_OUT_OF_THRESHOLD.value != 0) + | (bmask & BadPixels.OFFSET_NOISE_EVAL_ERROR.value != 0)).astype( + np.int), axis=0) fmask = np.zeros_like(msk).astype(np.uint32) - adc_i = bmask.shape[1]//8 - adc_j = bmask.shape[2]//8 + adc_i = bmask.shape[1] // 8 + adc_j = bmask.shape[2] // 8 for i in range(adc_i): for j in range(adc_j): - adc_cnt = np.count_nonzero(msk[i*adc_i:(i+1)*adc_i, j*adc_j:(j+1)*adc_j] > bmask.shape[0]//32) - if adc_cnt / (adc_i*adc_j) >= self.mask_noisy_adc: - fmask[i*adc_i:(i+1)*adc_i, j*adc_j:(j+1)*adc_j] = BadPixels.NOISY_ADC.value - return fmask + adc_cnt = np.count_nonzero( + msk[i * adc_i:(i + 1) * adc_i, j * adc_j:(j + 1) * adc_j] > + bmask.shape[0] // 32) + if adc_cnt / (adc_i * adc_j) >= self.mask_noisy_adc: + fmask[i * adc_i:(i + 1) * adc_i, + j * adc_j:(j + 1) * adc_j] = BadPixels.NOISY_ADC.value + return fmask def correct_agipd(self, irange): """ Correct Raw AGIPD data for offset and relative gain effects @@ -788,10 +822,12 @@ class AgipdCorrections: status = np.squeeze( self.infile[agipd_base + "/image/status"][irange, ...]) cellid = np.squeeze( - np.array(self.infile[agipd_base + "/image/cellId"][irange, ...])) + np.array( + self.infile[agipd_base + "/image/cellId"][irange, ...])) length = np.squeeze( - np.array(self.infile[agipd_base + "/image/length"][irange, ...])) - + np.array( + self.infile[agipd_base + "/image/length"][irange, ...])) + # this far end of the image index range we are working on nidx = int(cidx + irange.size) else: @@ -819,7 +855,7 @@ class AgipdCorrections: status = status[0::2] cellid = cellid[0::2] length = length[0::2] - + # first evaluate the gain into 0, 1, 2 --> high, medium, low gain = np.zeros(ga.shape, np.uint8) gain[...] = 0 @@ -828,18 +864,20 @@ class AgipdCorrections: # exceeding first threshold means data is medium or low gain gain[ga > t0[cellid, ...]] = 1 # exceeding also second threshold means data is low gain - gain[ga > t1[cellid, ...]] = 2 - + gain[(ga > t1[cellid, ...]) & ( + t1[cellid, ...] > 1.05 * t0[cellid, ...])] = 2 + # force into high or medium gain if requested if self.force_mg_if_below is not None and self.force_mg_if_below > 0: - gain[(gain == 2) & ((im - self.offset[cellid, ...,1]) < self.force_mg_if_below)] = 1 - + gain[(gain == 2) & ((im - self.offset[ + cellid, ..., 1]) < self.force_mg_if_below)] = 1 + if self.force_hg_if_below is not None and self.force_hg_if_below > 0: - gain[(im - self.offset[cellid, ...,0]) < self.force_hg_if_below] = 0 - + gain[(gain > 0) & ((im - self.offset[ + cellid, ..., 0]) < self.force_hg_if_below)] = 0 + for i in range(3): self.gain_stats[i] = np.sum(gain == i) - # check if any data has zero standard deviation, and mark this in # the bad pixel maks @@ -930,6 +968,10 @@ class AgipdCorrections: if self.do_rel_gain: im *= rel_cor + if self.adjust_mg_baseline: + mgbc = self.mg_bl_adjust[cellid, ...] + im[gain == 1] += 1.5 * mgbc[gain == 1] + # try to identify snowy pixels at this point if self.melt_snow is not False: ms = self.melt_snow @@ -987,14 +1029,14 @@ class AgipdCorrections: if self.adc_mask is None: self.adc_mask = self.make_noisy_adc_mask(msk) msk |= self.adc_mask - + # now write out the data sd = 1 if not self.il_mode else 2 - + if not self.karabo_data_mode: - self.ddset[cidx//sd:nidx//sd, ...] = im - self.gdset[cidx//sd:nidx//sd, ...] = gain - self.mdset[cidx//sd:nidx//sd, ...] = msk + self.ddset[cidx // sd:nidx // sd, ...] = im + self.gdset[cidx // sd:nidx // sd, ...] = gain + self.mdset[cidx // sd:nidx // sd, ...] = msk self.outfile[agipd_base + "image/cellId"][cidx:nidx] = cellid self.outfile[agipd_base + "image/trainId"][cidx:nidx] = trainId @@ -1043,7 +1085,7 @@ class AgipdCorrections: valid = status != 0 last_index = int(last[status != 0][-1]) + 1 first_index = int(first[status != 0][0]) - + idxtrains = np.squeeze(self.infile["/INDEX/trainId"]) medianTrain = np.nanmedian(idxtrains) lowok = (idxtrains > medianTrain - 1e4) @@ -1068,7 +1110,7 @@ class AgipdCorrections: agipd_base = self.agipd_base allcells = self.infile[agipd_base + "image/cellId"] allcells = np.squeeze(allcells[first_index:last_index, ...]) - + single_image = self.infile[agipd_base + "image/data"][first_index, ...] single_image = np.array(single_image) @@ -1078,8 +1120,8 @@ class AgipdCorrections: allcells = allcells[can_calibrate] firange = np.arange(first_index, last_index) firange = firange[can_calibrate] - - self.oshape = (firange.size if not self.il_mode else firange.size//2, + + self.oshape = (firange.size if not self.il_mode else firange.size // 2, single_image.shape[1], single_image.shape[2]) self.firange = firange @@ -1099,7 +1141,8 @@ class AgipdCorrections: if self.il_mode: firange = firange[0::2] alltrains = self.infile[agipd_base + "image/trainId"] - alltrains = np.squeeze(alltrains[first_index:last_index, ...]) + alltrains = np.squeeze( + alltrains[first_index:last_index, ...]) # these are touched in the correct function, do not copy them here dont_copy = ["data", "cellId", "trainId", "pulseId", "status", @@ -1132,15 +1175,33 @@ class AgipdCorrections: # sanitize indices for do in ["image", ]: - print(alltrains.shape, firange.max()) - uq, fidxv, cntsv = np.unique(alltrains[firange-firange[0]], return_index=True, - return_counts=True) - fidx = np.zeros(self.valid.shape, fidxv.dtype) - fidx[self.valid] = fidxv - - cnts = np.zeros(self.valid.shape, cntsv.dtype) - cnts[self.valid] = cntsv - + + uq, fidxv, cntsv = np.unique(alltrains[firange - firange[0]], + return_index=True, + return_counts=True) + + duq = (uq[1:] - uq[:-1]).astype(np.int64) + + cfidxv = [fidxv[0], ] + ccntsv = [cntsv[0], ] + for i, du in enumerate(duq.tolist()): + if du > 1000: + du = 1 + cntsv[i] = 0 + cfidxv += [0] * (du - 1) + [fidxv[i + 1], ] + ccntsv += [0] * (du - 1) + [cntsv[i + 1], ] + + mv = len(cfidxv) + fidx = np.zeros(len(cfidxv), fidxv.dtype) + fidx[self.valid[:mv]] = np.array(cfidxv)[self.valid[:mv]] + + for i in range(len(fidx) - 1, 2, -1): + if fidx[i - 1] == 0 and fidx[i] != 0: + fidx[i - 1] = fidx[i] + + cnts = np.zeros(len(cfidxv), cntsv.dtype) + cnts[self.valid[:mv]] = np.array(ccntsv)[self.valid[:mv]] + self.outfile.create_dataset(idx_base + "{}/first".format(do), fidx.shape, dtype=fidx.dtype, @@ -1181,8 +1242,8 @@ class AgipdCorrections: fsz = list(firange.shape) if self.il_mode: - fsz[0] = fsz[0]//2 - + fsz[0] = fsz[0] // 2 + self.outfile.create_dataset(agipd_base + "image/cellId", fsz, dtype=np.uint16, fletcher32=True) self.outfile.create_dataset(agipd_base + "image/trainId", fsz, @@ -1311,7 +1372,7 @@ class AgipdCorrections: (cal_db_interface, creation_time, max_cells_db, bias_voltage, photon_energy) = dbparms max_cells_db_dark = max_cells_db - timeout_cal_db = 300000 + timeout_cal_db = 30000 elif len(dbparms) == 6: (cal_db_interface, creation_time, max_cells_db, @@ -1319,7 +1380,7 @@ class AgipdCorrections: if max_cells_db_dark is None: max_cells_db_dark = max_cells_db - timeout_cal_db = 300000 + timeout_cal_db = 30000 else: (cal_db_interface, creation_time, max_cells_db, bias_voltage, photon_energy, max_cells_db_dark, @@ -1328,22 +1389,24 @@ class AgipdCorrections: if max_cells_db_dark is None: max_cells_db_dark = max_cells_db - if "#" in cal_db_interface: - prot, serv, ran = cal_db_interface.split(":") - r1, r2 = ran.split("#") - cal_db_interface = ":".join( - [prot, serv, str(np.random.randint(int(r1), int(r2)))]) + # if "#" in cal_db_interface: + # prot, serv, ran = cal_db_interface.split(":") + # r1, r2 = ran.split("#") + # cal_db_interface = ":".join( + # [prot, serv, str(np.random.randint(int(r1), int(r2)))]) dinstance = getattr(Detectors, self.cal_det_instance) - offset = get_constant_from_db(getattr(dinstance, qm), - Constants.AGIPD.Offset(), - Conditions.Dark.AGIPD( - memory_cells=max_cells_db_dark, - bias_voltage=bias_voltage), - np.zeros((128, 512, max_cells_db, 3)), - cal_db_interface, - creation_time=creation_time, - timeout=timeout_cal_db) + offset, when = get_constant_from_db_and_time(getattr(dinstance, qm), + Constants.AGIPD.Offset(), + Conditions.Dark.AGIPD( + memory_cells=max_cells_db_dark, + bias_voltage=bias_voltage), + np.zeros((128, 512, + max_cells_db, + 3)), + cal_db_interface, + creation_time=creation_time, + timeout=timeout_cal_db) noise = get_constant_from_db(getattr(dinstance, qm), Constants.AGIPD.Noise(), @@ -1379,8 +1442,9 @@ class AgipdCorrections: # we have all we need for dark image derived constants # initialize and return if only_dark: - self.initialize(offset, None, bpixels, noise, thresholds, None) - return + self.initialize(offset, None, bpixels, noise, thresholds, None, + slopesPC=None) + return when # load also non-dark constants from the database slopesPC = get_constant_from_db(getattr(dinstance, qm), @@ -1408,6 +1472,7 @@ class AgipdCorrections: pixels_x=512, pixels_y=128, beam_energy=None), # noqa + np.ones((128, 512, max_cells_db, 2)), cal_db_interface, creation_time=creation_time, @@ -1436,9 +1501,11 @@ class AgipdCorrections: if slopesFF.shape[2] > 32: xraygain = np.nanmedian(slopesFF[..., 32:min(96, self.max_cells)], axis=2) - else: + elif slopesFF.shape[2] > 2: xraygain = np.nanmedian(slopesFF[..., :min(96, self.max_cells)], axis=2) + else: + xraygain = np.squeeze(slopesFF[..., 0]) # relative X-ray gain is then each pixels gain, by the median gain # of all pixels @@ -1486,7 +1553,8 @@ class AgipdCorrections: photon_energy, pixels_x=512, pixels_y=128, - beam_energy=None), # noqa + beam_energy=None), + # noqa np.zeros((128, 512, max_cells_db)), cal_db_interface, creation_time=creation_time, @@ -1495,7 +1563,9 @@ class AgipdCorrections: bpixels |= bpff.astype(np.uint32)[..., :bpixels.shape[2], None] self.initialize(offset, rel_gain, bpixels, noise, thresholds, - base_offset) + base_offset, slopesPC=slopesPC) + + return when def initialize_from_file(self, filename, qm, with_dark=True): """ Initialize calibration constants from a calibration file @@ -1570,13 +1640,17 @@ class AgipdCorrections: with h5py.File(filename, "r") as calfile: bpixels = calfile["{}/{}/data".format(qm, "BadPixelsFF")][()] - bpixels |= np.moveaxis( - calfile["{}/{}/data".format(qm, "BadPixelsPC")][()], 0, 2) + try: + bpixels |= np.moveaxis( + calfile["{}/{}/data".format(qm, "BadPixelsPC")][()], 0, 2) + except: + pass bpixels = bpixels[..., None] # without gain dimension up to here if with_dark: offsets = calfile["{}/{}/data".format(qm, "Offset")][()] noises = calfile["{}/{}/data".format(qm, "Noise")][()] - thresholds = calfile["{}/{}/data".format(qm, "ThresholdsDark")][()] # noqa + thresholds = \ + calfile["{}/{}/data".format(qm, "ThresholdsDark")][()] # noqa bpixels |= calfile["{}/{}/data".format(qm, "BadPixelsDark")][ ()] @@ -1597,9 +1671,11 @@ class AgipdCorrections: slopesFF = slopesFF[..., 0] if slopesFF.shape[2] > 32: xraygain = np.nanmedian(slopesFF[..., 32:], axis=2) - else: + elif slopesFF.shape[2] > 2: xraygain = np.nanmedian( slopesFF[..., :min(96, self.max_cells)], axis=2) + else: + xraygain = np.squeeze(slopesFF[..., 0]) xraygain /= np.nanmedian(xraygain) pcrel = pc_high_m / np.nanmedian(pc_high_m, axis=2)[..., None] @@ -1614,4 +1690,4 @@ class AgipdCorrections: slopesPC[..., :self.max_cells, 4], xrayOffset] self.initialize(offsets, rel_gain, bpixels, noises, thresholds, - base_offset) + base_offset, slopesPC=slopesPC) diff --git a/cal_tools/cal_tools/lpdlib.py b/cal_tools/cal_tools/lpdlib.py index 5c1a0fb6b8f390400c3fa9993227aca3cc72128b..d0c557aab8964aa847b3aba13d2b063006062254 100644 --- a/cal_tools/cal_tools/lpdlib.py +++ b/cal_tools/cal_tools/lpdlib.py @@ -2,8 +2,8 @@ import copy import h5py import numpy as np -from cal_tools.tools import get_constant_from_db from cal_tools.enums import BadPixels +from cal_tools.tools import get_constant_from_db, get_constant_from_db_and_time from iCalibrationDB import Constants, Conditions, Detectors @@ -41,7 +41,7 @@ class LpdCorrections: raw_fmt_version=2, chunk_size=512, h5_data_path="INSTRUMENT/FXE_DET_LPD1M-1/DET/{}CH0:xtdf/", h5_index_path="INDEX/FXE_DET_LPD1M-1/DET/{}CH0:xtdf/", - do_ff=True, correct_non_linear=False, karabo_data_mode=False): + do_ff=True, correct_non_linear=True, karabo_data_mode=False): """ Initialize an LpdCorrections Class @@ -85,24 +85,19 @@ class LpdCorrections: self.bins_signal_high_range = bins_signal_high_range self.cidx = 0 self.do_ff = do_ff - filter_modules = [11] + filter_modules = [] self.filter_cells = [0, 1] if channel in filter_modules else [] - self.cnl = correct_non_linear + self.cnl = True # correct_non_linear self.karabo_data_mode = karabo_data_mode # emprically determined from APD datasets p900038, r155,r156 - self.cnl_const = {'med': - {'lin': (0.10960777594700886, - 859.4778021212404), - 'repo': (0.11046365063379418, - 751.5109159229758, - 1436280.868413923, - 9966.92701736398)}, - 'high': {'sigm': (1333.6836067255365, - 8370.936473950766, - 0.003912416547243528, - 0.00013306099710934553), - 'lin': (0.16284255864598732, - -29.830797125784763)}} + # emprically determined from APD datasets p900038, r155,r156 + self.cnl_const = { + 'high': {'A': -0.000815934, 'lam': 0.00811281, 'c': 1908.89, + 'm': 0, 'b': 0}, + 'med': {'A': 0.0999894, 'lam': -0.00137652, 'c': 3107.83, + 'm': 3.89982e-06, 'b': -0.116811}, + 'low': {'A': 0.0119132, 'lam': -0.0002, 'c': 36738.6, + 'm': 2.00273e-08, 'b': 0.245537}} def get_iteration_range(self): """Returns a range expression over which to iterate in chunks @@ -157,7 +152,7 @@ class LpdCorrections: if not hasattr(self, "mask"): self.mask = mask else: - self.mask |= mask + self.mask |= mask[:self.mask.shape[0], ...] if noise is not None: self.noise = noise if flatfield is not None: @@ -222,7 +217,6 @@ class LpdCorrections: cells = np.squeeze(irange['image.cellId']) length = np.squeeze(irange['image.length']) - # split gain and image info into separate arrays im, gain = self.split_gain(im[:, 0, ...]) @@ -269,35 +263,30 @@ class LpdCorrections: im /= self.flatfield[None, :, :] # hacky way of smoothening transition region between med and low - #im[gain == 2] -= im[gain == 2] * cfac[gain == 2] - + # im[gain == 2] -= im[gain == 2] * cfac[gain == 2] + # perform non-linear corrections if requested if self.cnl: - largs = self.cnl_const['high']['lin'] - sargs = self.cnl_const['high']['sigm'] - n, c, b, k = sargs - y = im[(gain==0) & (im > 1000)] - x = (-np.arctanh(b-y/n+1)+c*k)/k - dy = largs[0]*x+largs[1] - n*(1+b+np.tanh((x-c)*k)) - im[(gain==0) & (im > 1000)] += dy - - mhg = largs[0] - bhg = largs[1] - - largs = self.cnl_const['med']['lin'] - rargs = self.cnl_const['med']['repo'] - c, k, j, n = rargs - j *= -1 - mf = mhg/largs[0] - - y = im[(gain==1)] - x = (np.sqrt(c**2*n**2+4*c*j+2*c*n*(k-y)+(k-y)**2)+c*n-k+y)/(2*c) - (bhg-largs[1])/largs[0] - dy = (mf*largs[0]-c)*x + largs[1] - k + j/(x-n) - - im[(gain==1)] += (bhg-largs[1]) + dy - - #im[(gain==1) & (im >= 3500)] *= mf - #im[(gain==1) & (im >= 3500)] += (bhg-largs[1]) + def lin_exp_fun(x, m, b, A, lam, c): + return m * x + b + A * np.exp(lam * (x - c)) + + x = im[(gain == 0)] + cnl = self.cnl_const['high'] + cf = lin_exp_fun(x, cnl['m'], cnl['b'], cnl['A'], cnl['lam'], + cnl['c']) + im[(gain == 0)] -= np.maximum(cf, -0.2) * x + + x = im[(gain == 1)] + cnl = self.cnl_const['med'] + cf = lin_exp_fun(x, cnl['m'], cnl['b'], cnl['A'], cnl['lam'], + cnl['c']) + im[(gain == 1)] -= np.minimum(cf, 0.2) * x + + x = im[(gain == 2)] + cnl = self.cnl_const['low'] + cf = lin_exp_fun(x, cnl['m'], cnl['b'], cnl['A'], cnl['lam'], + cnl['c']) + im[(gain == 2)] -= np.minimum(cf, 0.45) * x # create bad pixels masks, here non-finite values bidx = ~np.isfinite(im) @@ -378,11 +367,18 @@ class LpdCorrections: status = np.squeeze(self.infile[lpd_base + "image/status"]) if np.count_nonzero(status != 0) == 0: raise IOError("File {} has no valid counts".format( - self.infile)) + self.infile)) last = np.squeeze(self.infile[lpd_base + "image/last"]) valid = status != 0 - last_index = int(last[status != 0][-1]) - first_index = int(last[status != 0][0]) + + idxtrains = np.squeeze(self.infile["/INDEX/trainId"]) + medianTrain = np.nanmedian(idxtrains) + lowok = (idxtrains > medianTrain - 1e4) + highok = (idxtrains < medianTrain + 1e4) + valid &= lowok & highok + + last_index = int(last[valid][-1]) + first_index = int(last[valid][0]) else: raise AttributeError( "Not a known raw format version: {}".format(self.index_v)) @@ -433,11 +429,6 @@ class LpdCorrections: dont_copy = [lpd_base + "image/{}".format(do) for do in dont_copy] - # dont_copy += [idx_base+"{}/first".format(do) - # for do in ["detector", "header", "image", "trailer"]] - # dont_copy += [idx_base+"{}/count".format(do) - # for do in ["detector", "header", "image", "trailer"]] - dont_copy += [idx_base + "{}/first".format(do) for do in ["image"]] dont_copy += [idx_base + "{}/count".format(do) @@ -457,8 +448,32 @@ class LpdCorrections: self.infile.visititems(visitor) # sanitize indices for do in ["image", ]: - uq, fidx, cnts = np.unique(alltrains[firange], return_index=True, - return_counts=True) + uq, fidxv, cntsv = np.unique(alltrains[firange - firange[0]], + return_index=True, + return_counts=True) + + duq = (uq[1:] - uq[:-1]).astype(np.int64) + + cfidxv = [fidxv[0], ] + ccntsv = [cntsv[0], ] + for i, du in enumerate(duq.tolist()): + if du > 1000: + du = 1 + cntsv[i] = 0 + cfidxv += [0] * (du - 1) + [fidxv[i + 1], ] + ccntsv += [0] * (du - 1) + [cntsv[i + 1], ] + + mv = len(cfidxv) + fidx = np.zeros(len(cfidxv), fidxv.dtype) + fidx[self.valid[:mv]] = np.array(cfidxv)[self.valid[:mv]] + + for i in range(len(fidx) - 1, 2, -1): + if fidx[i - 1] == 0 and fidx[i] != 0: + fidx[i - 1] = fidx[i] + + cnts = np.zeros(len(cfidxv), cntsv.dtype) + cnts[self.valid[:mv]] = np.array(ccntsv)[self.valid[:mv]] + self.outfile.create_dataset(idx_base + "{}/first".format(do), fidx.shape, dtype=fidx.dtype, @@ -585,23 +600,17 @@ class LpdCorrections: (cal_db_interface, creation_time, max_cells_db, capacitor, bias_voltage, photon_energy, timeout) = dbparms - if "#" in cal_db_interface: - prot, serv, ran = cal_db_interface.split(":") - r1, r2 = ran.split("#") - cal_db_interface = ":".join( - [prot, serv, str(np.random.randint(int(r1), int(r2)))]) - print("Connecting to interface: {}".format(cal_db_interface)) - - offset = get_constant_from_db(getattr(Detectors.LPD1M1, qm), - Constants.LPD.Offset(), - Conditions.Dark.LPD( - memory_cells=max_cells_db, - bias_voltage=bias_voltage, - capacitor=capacitor), - np.zeros((256, 256, max_cells_db, 3)), - cal_db_interface, - creation_time=creation_time, - timeout=timeout) + offset, when = get_constant_from_db_and_time( + getattr(Detectors.LPD1M1, qm), + Constants.LPD.Offset(), + Conditions.Dark.LPD( + memory_cells=max_cells_db, + bias_voltage=bias_voltage, + capacitor=capacitor), + np.zeros((256, 256, max_cells_db, 3)), + cal_db_interface, + creation_time=creation_time, + timeout=timeout) noise = get_constant_from_db(getattr(Detectors.LPD1M1, qm), Constants.LPD.Noise(), @@ -628,7 +637,7 @@ class LpdCorrections: # done loading constants and returning if only_dark: self.initialize(offset, None, None, bpixels, noise, None) - return + return when slopesCI = get_constant_from_db(getattr(Detectors.LPD1M1, qm), Constants.LPD.SlopesCI(), @@ -685,6 +694,7 @@ class LpdCorrections: bpixels |= bpix[..., None] self.initialize(offset, rel_gains, rel_gain_offset, bpixels, noise, flat_fields) + return when def initialize_from_file(self, filename, qm, with_dark=True): """ Initialize calibration constants from a calibration file diff --git a/cal_tools/cal_tools/tools.py b/cal_tools/cal_tools/tools.py index 2e8961c002d7685df06ef97a0671f0ad6db4ece2..e1e68c1589b565d7586f2e575b6ebd5e92d69cb3 100644 --- a/cal_tools/cal_tools/tools.py +++ b/cal_tools/cal_tools/tools.py @@ -9,9 +9,8 @@ from subprocess import CalledProcessError, check_call, check_output from textwrap import dedent from time import sleep -from jinja2 import Template import tabulate - +from jinja2 import Template from xfel_calibrate import settings @@ -38,24 +37,27 @@ def combine_report(run_path, calibration): makedirs(sphinx_path) direntries = listdir(run_path) direntries.sort(key=natural_keys) - + for entry in direntries: - + if isfile("{}/{}".format(run_path, entry)): name, ext = splitext("{}".format(entry)) - + if ext == ".rst": - comps = name.split("__") + comps = name.split("__") if len(comps) >= 3: - group, name_param, conc_param = "_".join(comps[:-2]), comps[-2], comps[-1] + group, name_param, conc_param = "_".join(comps[:-2]), \ + comps[-2], comps[-1] else: - group, name_param, conc_param = comps[0], "None", "None" + group, name_param, conc_param = comps[0], "None", "None" - with open("{}/{}.rst".format(sphinx_path, group), "a") as gfile: + with open("{}/{}.rst".format(sphinx_path, group), + "a") as gfile: if conc_param != "None": - title = "{}. {} = {}".format(calibration, name_param, conc_param) + title = "{}. {} = {}".format(calibration, name_param, + conc_param) gfile.write(title + "\n") - gfile.write( "=" *len (title) + "\n") + gfile.write("=" * len(title) + "\n") gfile.write("\n") with open("{}/{}".format(run_path, entry), "r") as ifile: skip_next = False @@ -65,14 +67,16 @@ def combine_report(run_path, calibration): continue if conc_param == "None": gfile.write(line) - elif " ".join(calibration.split()) != " ".join(line.split()): + elif " ".join(calibration.split()) != " ".join( + line.split()): gfile.write(line) else: skip_next = True - + gfile.write("\n\n") if isdir("{}/{}".format(run_path, entry)): - copytree("{}/{}".format(run_path, entry), "{}/{}".format(sphinx_path, entry)) + copytree("{}/{}".format(run_path, entry), + "{}/{}".format(sphinx_path, entry)) return sphinx_path @@ -268,7 +272,7 @@ def make_report(run_path, tmp_path, out_path, project, author, version, print("Removing temporary files at: {}".format(tmp_path)) rmtree(tmp_path) - + def make_titlepage(sphinx_path, project, data_path): """ Create title page for report using template @@ -288,7 +292,6 @@ def make_titlepage(sphinx_path, project, data_path): def finalize(joblist, finaljob, run_path, out_path, project, calibration, author, version, report_to, data_path='Unknown'): - print("Waiting on jobs to finish: {}".format(joblist)) while True: found_jobs = set() @@ -302,7 +305,7 @@ def finalize(joblist, finaljob, run_path, out_path, project, calibration, sleep(10) prepare_plots(run_path) - make_timing_summary(run_path, joblist+[str(finaljob)]) + make_timing_summary(run_path, joblist + [str(finaljob)]) sphinx_path = combine_report(run_path, calibration) make_titlepage(sphinx_path, project, data_path) make_report(sphinx_path, run_path, out_path, project, author, version, @@ -321,13 +324,13 @@ def parse_runs(runs, return_type=str): elif isinstance(runs, (list, tuple)): pruns = runs else: - pruns = [runs,] - + pruns = [runs, ] + if return_type is str: return ["r{:04d}".format(r) for r in pruns] else: return pruns - + def run_prop_seq_from_path(filename): run = re.findall(r'.*r([0-9]{4}).*', filename) @@ -356,11 +359,12 @@ def map_modules_from_files(filelist, file_inset, quadrants, modules_per_quad): module_files[name].put(file) total_sequences += 1 total_file_size += path.getsize(file) - + return module_files, mod_ids, total_sequences, total_file_size -def gain_map_files(in_folder, runs, sequences, file_inset, quadrants, modules_per_quad): +def gain_map_files(in_folder, runs, sequences, file_inset, quadrants, + modules_per_quad): total_sequences = 0 total_file_size = 0 gain_mapped_files = OrderedDict() @@ -369,7 +373,7 @@ def gain_map_files(in_folder, runs, sequences, file_inset, quadrants, modules_pe dirlist = listdir(ginfolder) file_list = [] for entry in dirlist: - #only h5 file + # only h5 file abs_entry = "{}/{}".format(ginfolder, entry) if path.isfile(abs_entry) and path.splitext(abs_entry)[1] == ".h5": @@ -379,13 +383,15 @@ def gain_map_files(in_folder, runs, sequences, file_inset, quadrants, modules_pe for seq in sequences: if "{:05d}.h5".format(seq) in abs_entry: file_list.append(path.abspath(abs_entry)) - - mapped_files, mod_ids, seq, fs = map_modules_from_files(file_list, file_inset, - quadrants, modules_per_quad) + + mapped_files, mod_ids, seq, fs = map_modules_from_files(file_list, + file_inset, + quadrants, + modules_per_quad) total_sequences += seq total_file_size += fs gain_mapped_files[gain] = mapped_files - return gain_mapped_files, total_sequences, total_file_size/1e9 + return gain_mapped_files, total_sequences, total_file_size / 1e9 # from https://github.com/jupyter/notebook/issues/1000 @@ -405,6 +411,7 @@ try: # Python 3 except ImportError: # Python 2 import warnings from IPython.utils.shimmodule import ShimWarning + with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ShimWarning) from IPython.html.notebookapp import list_running_servers @@ -427,28 +434,38 @@ def get_notebook_name(): return relative_path except: return os.environ.get("CAL_NOTEBOOK_NAME", "Unknown Notebook") - - + + def get_dir_creation_date(directory, run): import os import datetime - creation_time = os.stat("{}/r{:04d}".format(directory, run)).st_ctime + creation_time = os.stat("{}/r{:04d}".format(directory, run)).st_ctime creation_time = datetime.datetime.fromtimestamp(creation_time) - return(creation_time) + return creation_time def get_dir_creation_date(directory, run): import os import datetime - creation_time = os.stat("{}/r{:04d}".format(directory, run)).st_mtime + creation_time = os.stat("{}/r{:04d}".format(directory, run)).st_mtime creation_time = datetime.datetime.fromtimestamp(creation_time) - return(creation_time) + return creation_time + + +def get_random_db_interface(cal_db_interface): + if "#" in cal_db_interface: + prot, serv, ran = cal_db_interface.split(":") + r1, r2 = ran.split("#") + return ":".join([prot, serv, str(np.random.randint(int(r1), int(r2)))]) + return cal_db_interface already_printed = {} + + def get_from_db(device, constant, condition, empty_constant, - cal_db_interface, creation_time = None, - verbosity=1, timeout=30000): + cal_db_interface, creation_time=None, + verbosity=1, timeout=30000, ntries=120): """ Return calibration constants and metadata requested from CalDB @@ -460,32 +477,53 @@ def get_from_db(device, constant, condition, empty_constant, :param creation_time: Latest time for constant to be created :param verbosity: Level of verbosity (0 - silent) :param timeout: Timeout for zmq request + :param ntries: number of tries to contact the database :return: Calibration constant, metadata """ - from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions - + from iCalibrationDB import ConstantMetaData, Versions + if device: - metadata = ConstantMetaData() + metadata = ConstantMetaData() metadata.calibration_constant = constant metadata.detector_condition = condition if creation_time is None: metadata.calibration_constant_version = Versions.Now(device=device) + while ntries > 0: + this_interface = get_random_db_interface(cal_db_interface) + try: + metadata.retrieve(this_interface, timeout=6000000, + meta_only=True) + break + except Exception as e: + if verbosity > 0: + print(e) + ntries -= 1 else: - metadata.calibration_constant_version = Versions.Timespan(device=device, - start=creation_time) - creation_time = creation_time.isoformat() - - try: - metadata.retrieve(cal_db_interface, when=creation_time, timeout=timeout) + metadata.calibration_constant_version = Versions.Timespan( + device=device, + start=creation_time) + + while ntries > 0: + this_interface = get_random_db_interface(cal_db_interface) + try: + metadata.retrieve(this_interface, + when=creation_time.isoformat(), + timeout=6000000, meta_only=True) + break + except Exception as e: + if verbosity > 0: + print(e) + + ntries -= 1 + if ntries > 0: if verbosity > 0: if constant.name not in already_printed or verbosity > 1: already_printed[constant.name] = True + begin_at = metadata.calibration_constant_version.begin_at print("{} was injected on: {}".format(constant.name, - metadata.calibration_constant_version.begin_at)) + begin_at)) return constant.data, metadata - except Exception as e: - if verbosity > 0: - print(e) + else: return empty_constant, metadata else: return empty_constant, None @@ -493,17 +531,33 @@ def get_from_db(device, constant, condition, empty_constant, def get_constant_from_db(device, constant, condition, empty_constant, cal_db_interface, creation_time=None, - print_once=True, timeout=30000): + print_once=True, timeout=30000, ntries=120): """ Return calibration constants requested from CalDB """ data, _ = get_from_db(device, constant, condition, empty_constant, - cal_db_interface, creation_time, - int(print_once), timeout) + cal_db_interface, creation_time, + int(print_once), timeout, ntries) return data +def get_constant_from_db_and_time(device, constant, condition, empty_constant, + cal_db_interface, creation_time=None, + print_once=True, timeout=30000, ntries=120): + """ + Return calibration constants requested from CalDB, alongside injection + time + """ + data, m = get_from_db(device, constant, condition, empty_constant, + cal_db_interface, creation_time, + int(print_once), timeout, ntries) + if m: + return data, m.calibration_constant_version.begin_at + else: + return data, None + + def tex_escape(text): """ Escape latex special characters found in the text