From 73ef8b0db19d9bd5315299aed107596b2b00bf84 Mon Sep 17 00:00:00 2001
From: ahmedk <karim.ahmed@xfel.eu>
Date: Mon, 8 Jan 2024 12:53:02 +0100
Subject: [PATCH] remove gainCal_JF_Fit_sendDB_NBC after moving the code to
 creat_gain_map NB

---
 .../Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb  | 302 ------------------
 1 file changed, 302 deletions(-)
 delete mode 100755 notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb

diff --git a/notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb b/notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb
deleted file mode 100755
index b0f3f6d30..000000000
--- a/notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb
+++ /dev/null
@@ -1,302 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Send constants from file to the DB"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "in_folder = '/gpfs/exfel/exp/MID/202330/p900322/raw'\n",
-    "g_map_old_dir = '/gpfs/exfel/data/user/mramilli/jungfrau/module_PSI_gainmaps/M302'\n",
-    "gain_map_file = '/gainMaps_M109_Burst_Fix_20230523.h5'  # path\n",
-    "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/jf_ff/gain_maps\"\n",
-    "metadata_folder = ''  # Directory containing calibration_metadata.yml when run by xfel-calibrate\n",
-    "\n",
-    "g0_runs = [94]\n",
-    "\n",
-    "# Detector module parameters.\n",
-    "karabo_id = 'MID_EXP_JF500K2'\n",
-    "karabo_da = ['JNGFR02']\n",
-    "\n",
-    "# Parameter conditions\n",
-    "bias_voltage = -1  # detector bias voltage\n",
-    "integration_time = -1  # the detector acquisition rate, use 0 to try to auto-determine\n",
-    "gain_setting = 0\n",
-    "gain_mode = 0\n",
-    "memory_cells = -1  # number of memory cells used, use 0 to auto-derive\n",
-    "\n",
-    "# Condition limits\n",
-    "bias_voltage_lims = [0, 200]\n",
-    "integration_time_lims = [0.1, 1000]\n",
-    "\n",
-    "gain_map_name = 'gain_map_g0'\n",
-    "db_output = False\n",
-    "send_bpix = False\n",
-    "\n",
-    "# CALCAT API parameters\n",
-    "cal_db_interface = \"tcp://max-exfl-cal-001:8020\"  # the database interface to use\n",
-    "creation_time = \"\"  # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. \"2022-06-28 13:00:00\"\\\n",
-    "cal_db_timeout = 180000"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# imports, usually no need to change anything here\n",
-    "from pathlib import Path\n",
-    "\n",
-    "import dateutil.parser\n",
-    "import matplotlib.pyplot as plt\n",
-    "import numpy as np\n",
-    "from h5py import File as h5file\n",
-    "from iCalibrationDB import Conditions, Constants\n",
-    "from XFELDetAna.plotting.heatmap import heatmapPlot\n",
-    "\n",
-    "from cal_tools.calcat_interface import CalCatApi\n",
-    "from cal_tools.restful_config import calibration_client\n",
-    "from cal_tools.tools import calcat_creation_time, get_report, send_to_db\n",
-    "\n",
-    "%matplotlib inline"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "if gain_setting == 1:\n",
-    "    gain_map_name = 'gain_map_hg0'\n",
-    "da_name = karabo_da[0]\n",
-    "g_map_old_dir = Path(g_map_old_dir)\n",
-    "in_folder = Path(in_folder)\n",
-    "out_folder = Path(out_folder)\n",
-    "gain_file = g_map_old_dir / gain_map_file\n",
-    "g0_run = g0_runs[0]\n",
-    "\n",
-    "# Run's creation time:\n",
-    "creation_time = calcat_creation_time(in_folder, g0_run, creation_time)\n",
-    "print(f\"Creation time: {creation_time}\")\n",
-    "\n",
-    "calcat_client = calibration_client()\n",
-    "calcat = CalCatApi(client=calcat_client)\n",
-    "\n",
-    "# Look up PDUs\n",
-    "detector_id = calcat.detector(karabo_id)['id']\n",
-    "pdus_by_da = calcat.physical_detector_units(\n",
-    "    detector_id, pdu_snapshot_at=creation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# Read constants from file\n",
-    "constant_data = {}\n",
-    "\n",
-    "gain_map = None\n",
-    "bad_pixel_ff = None\n",
-    "pdu = pdus_by_da[da_name][\"physical_name\"]\n",
-    "with h5file(out_folder / f\"const_RelativeGain_{pdu}.h5\", 'r') as f:\n",
-    "    gain_map = np.array(f[\"data\"])\n",
-    "    \n",
-    "    if memory_cells < 0:\n",
-    "        memory_cells = int(gain_map.shape[-2])\n",
-    "        # memory_cells = int(f[\"condition\"][\"Memory cells\"][\"value\"][()])\n",
-    "    print(f'Memory Cells: {memory_cells}')\n",
-    "\n",
-    "    if 'bad_pixel_fit' in f.keys():\n",
-    "        bad_pixel_ff = np.array(f['bad_pixel_fit'])\n",
-    "        print(bad_pixel_ff.shape)\n",
-    "    else:\n",
-    "        print('BadPixelsFF not found')\n",
-    "    \n",
-    "    if integration_time < 0:\n",
-    "        integration_time = np.float32(f[\"condition\"][\"Integration Time\"][\"value\"][()])\n",
-    "        print(f'Integration time: {integration_time} us')\n",
-    "    else:\n",
-    "        print(f'Using manual set integration_time {integration_time} us')\n",
-    "\n",
-    "    if bias_voltage < 0:\n",
-    "        bias_voltage = np.float32(f[\"condition\"][\"Sensor Bias Voltage\"][\"value\"][()])\n",
-    "        print(f'Bias voltage: {bias_voltage} V')\n",
-    "    else:\n",
-    "        print(f'Using manual set bias_voltage: {bias_voltage} V')\n",
-    "\n",
-    "    if 'creation_time' in f.keys():\n",
-    "        creation_time = f['creation_time'][()].decode('utf-8')\n",
-    "        creation_time = dateutil.parser.isoparse(creation_time)\n",
-    "        print(f'Creation Time: {creation_time}')\n",
-    "    else:\n",
-    "        print(f'Using this date: {creation_time}')\n",
-    "\n",
-    "    if 'file_loc' in f.keys():\n",
-    "        file_loc = f['file_loc'][()].decode('utf-8')\n",
-    "        print(f'file_loc: {file_loc}')\n",
-    "    else:\n",
-    "        proposal = list(filter(None, in_folder.strip('/').split('/')))[-2]\n",
-    "        file_loc = f\"proposal:{proposal} runs:{g0_run}\"\n",
-    "        print(f'Using this file_loc: {file_loc}')\n",
-    "\n",
-    "    if 'report_path' in f.keys():\n",
-    "        report_path = f['report_path'][()].decode('utf-8')\n",
-    "        print(f'report_path: {report_path}')\n",
-    "    else:\n",
-    "        report_path = get_report(metadata_folder)\n",
-    "        print(f'Using this report_path: {report_path}')\n",
-    "    # if 'karabo_id' in f.attrs.keys():\n",
-    "    #     if isinstance(f.attrs['karabo_id'], str):\n",
-    "    #         karabo_id = str(f.attrs['karabo_id'])\n",
-    "    #         print(f'Karabo ID: {karabo_id}')\n",
-    "    #     else:\n",
-    "    #         print(f'karabo id not a string, using {karabo_id}')\n",
-    "    # else:\n",
-    "    #     print(f'karabo id not found, using {karabo_id}')\n",
-    "        \n",
-    "    # if 'da_name' in f.attrs.keys():\n",
-    "    #     if isinstance(f.attrs['da_name'], str):\n",
-    "    #         da_name = str(f.attrs['da_name'])\n",
-    "    #         print(f'DA name: {da_name}')\n",
-    "    #     else:\n",
-    "    #         print(f'DA name not a string, using {da_name}')\n",
-    "    # else:\n",
-    "    #     print(f'DA name not found, using {da_name}')\n",
-    "\n",
-    "    if gain_mode < 0:\n",
-    "        if \"gain_mode\" in f[\"condition\"].keys():\n",
-    "            gain_mode = np.int(f[\"condition\"][\"Gain Mode\"][\"value\"][()])\n",
-    "        else:\n",
-    "            gain_mode = 0\n",
-    "        print(f'Gain mode: {gain_mode}')\n",
-    "    else:\n",
-    "        print(f'Using manual set gain_mode {gain_mode}')\n",
-    "\n",
-    "    f.close()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "gain = Constants.jungfrau.RelativeGain()\n",
-    "gain.data = gain_map\n",
-    "\n",
-    "condition = Conditions.Dark.jungfrau(\n",
-    "    memory_cells=memory_cells, \n",
-    "    bias_voltage=bias_voltage,\n",
-    "    integration_time=integration_time,\n",
-    "    gain_mode=gain_mode,\n",
-    "    gain_setting=gain_setting)\n",
-    "\n",
-    "for parm in condition.parameters:\n",
-    "    if parm.name == \"Integration Time\":\n",
-    "        print('setting integration time limits')\n",
-    "        parm.lower_deviation = integration_time - integration_time_lims[0]\n",
-    "        parm.upper_deviation = integration_time_lims[1] - integration_time\n",
-    "\n",
-    "for parm in condition.parameters:\n",
-    "    if parm.name == \"Sensor Bias Voltage\":\n",
-    "        print('setting bias voltage limits')\n",
-    "        parm.lower_deviation = bias_voltage - bias_voltage_lims[0]\n",
-    "        parm.upper_deviation = bias_voltage_lims[1] - bias_voltage"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "print('Creating time: ', creation_time)\n",
-    "\n",
-    "if db_output:\n",
-    "    send_to_db(\n",
-    "        db_module=pdu,\n",
-    "        karabo_id=karabo_id, \n",
-    "        constant=gain, \n",
-    "        condition=condition, \n",
-    "        file_loc=file_loc, \n",
-    "        report_path='',\n",
-    "        cal_db_interface=cal_db_interface,\n",
-    "        creation_time=creation_time,\n",
-    "    )\n",
-    "\n",
-    "if bad_pixel_ff is not None and send_bpix:\n",
-    "    bpix_ff = Constants.jungfrau.BadPixelsFF()\n",
-    "    # WHY CONDITION DEVIATIONS ARE NOT CONSIDERED FOR THE BADPIXELS\n",
-    "    condition = Conditions.Dark.jungfrau(\n",
-    "        memory_cells=memory_cells, \n",
-    "        bias_voltage=bias_voltage,\n",
-    "        integration_time=integration_time,\n",
-    "        gain_setting=gain_setting,\n",
-    "    )\n",
-    "\n",
-    "    bpix_ff.data = bad_pixel_ff\n",
-    "    send_to_db(\n",
-    "        db_module=pdu,\n",
-    "        karabo_id=karabo_id,\n",
-    "        constant=bpix_ff, \n",
-    "        condition=condition, \n",
-    "        file_loc=file_loc,\n",
-    "        report_path='',\n",
-    "        cal_db_interface=cal_db_interface,\n",
-    "        creation_time=creation_time,\n",
-    "    )"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "for g in range(0, gain_map.shape[3]):\n",
-    "    f_im = heatmapPlot(\n",
-    "        np.swapaxes(gain_map[..., 0, g], 0, 1), \n",
-    "        y_label=\"Row\",\n",
-    "        x_label=\"Column\",\n",
-    "        lut_label=\"G{:01d}[ADCu/keV]\".format(g),\n",
-    "        aspect=1.,\n",
-    "        vmin=np.min(gain_map[..., 0, g].ravel()),\n",
-    "        vmax=np.max(gain_map[..., 0, g].ravel()),\n",
-    "    )\n",
-    "    plt.show()"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.8.11"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
-- 
GitLab