diff --git a/cal_tools/cal_tools/agipdutils.py b/cal_tools/cal_tools/agipdutils.py index 347198785c517a8c4e6621466fa374de351ec3b6..85bc81bb3d8e60e1104da6b9e792fd0aea464b3c 100644 --- a/cal_tools/cal_tools/agipdutils.py +++ b/cal_tools/cal_tools/agipdutils.py @@ -1,8 +1,9 @@ import copy +from typing import Tuple import numpy as np from cal_tools.enums import BadPixels, SnowResolution -from scipy.signal import cwt, find_peaks_cwt, ricker +from scipy.signal import cwt, ricker from sklearn.mixture import GaussianMixture from sklearn.preprocessing import StandardScaler @@ -249,8 +250,10 @@ def correct_baseline_via_hist(d, pcm, g): return d, 0 it += 1 - def min_hist_distance(pc, bins=100, ran=(-10000, 10000), dec=20, - minbin=10): + def min_hist_distance(pc: int, + bins: int = 100, + ran: Tuple[int, int] = (-10000, 10000), + minbin: int = 10) -> float: hh, e = np.histogram(dd[g == 0] - pc, bins=bins, range=ran) hm, e = np.histogram((dd[g == 1] - pc) * pcm[g == 1], bins=bins, range=ran)