From 89080e101bb5d2e27645e40f5888dd302ffed449 Mon Sep 17 00:00:00 2001
From: karnem <mikhail.karnevskiy@desy.de>
Date: Wed, 10 Jul 2019 12:13:43 +0200
Subject: [PATCH] update plotting notebooks

---
 cal_tools/cal_tools/ana_tools.py              | 202 ++++--
 notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb | 326 +++++----
 .../PlotFromCalDB_Summary_AGIPD_NBC.ipynb     | 286 ++++++++
 notebooks/LPD/PlotFromCalDB.ipynb             | 342 ---------
 notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb     | 652 ++++++++++++++++++
 5 files changed, 1267 insertions(+), 541 deletions(-)
 create mode 100644 notebooks/AGIPD/PlotFromCalDB_Summary_AGIPD_NBC.ipynb
 delete mode 100644 notebooks/LPD/PlotFromCalDB.ipynb
 create mode 100644 notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb

diff --git a/cal_tools/cal_tools/ana_tools.py b/cal_tools/cal_tools/ana_tools.py
index 7d19a928e..689c94681 100644
--- a/cal_tools/cal_tools/ana_tools.py
+++ b/cal_tools/cal_tools/ana_tools.py
@@ -1,7 +1,6 @@
 import h5py
 import numpy as np
 import matplotlib.pyplot as plt
-import seaborn
 import datetime
 import glob
 
@@ -43,21 +42,41 @@ def load_data_from_hdf5(filelist):
                 for mKey in f.get(cKey):
                     if mKey not in data[cKey]:
                         data[cKey][mKey] = {}
-                        data[cKey][mKey]["mdata"] = []
-                    # Loop over time stamps
+                    # Loop over module data
                     for tKey in f.get(cKey + '/' + mKey):
-                        # Loop over metadata
-                        mdata = {}
-                        for mdKey in f.get(
-                                "/".join((cKey, mKey, tKey, 'mdata'))):
-                            mdata[mdKey] = f.get(
-                                "/".join(
-                                    (cKey, mKey, tKey, 'mdata', mdKey))).value
-                        data[cKey][mKey]["mdata"].append(mdata)
+
+                        if tKey == 'ctime':
+                            if "ctime" not in data[cKey][mKey]:
+                                data[cKey][mKey]["ctime"] = []
+                            for timeKey in f.get("/".join((cKey, mKey, tKey))):
+                                path = "/".join((cKey, mKey, tKey, timeKey))
+                                value = f.get(path).value
+                                value = datetime.datetime.fromtimestamp(value)
+                                data[cKey][mKey]["ctime"].append(value)
+                            continue
+
+                        # Load ndarray if they are there
+                        item = f.get("/".join((cKey, mKey, tKey)))
+                        if isinstance(item, h5py._hl.dataset.Dataset):
+                            val = item.value
+                            data[cKey][mKey][tKey] = val
+                            continue
 
                         # Loop over stored data
                         for dKay in f.get( "/".join((cKey, mKey, tKey))):
+
+                            # Loop over metadata
                             if dKay == "mdata":
+                                mdata = {}
+                                for mdKey in f.get(
+                                        "/".join((cKey, mKey, tKey, 'mdata'))):
+                                    mdata[mdKey] = f.get(
+                                        "/".join(
+                                            (cKey, mKey, tKey, 'mdata',
+                                             mdKey))).value
+                                if "mdata" not in data[cKey][mKey]:
+                                    data[cKey][mKey]["mdata"] = []
+                                data[cKey][mKey]["mdata"].append(mdata)
                                 continue
 
                             if dKay not in data[cKey][mKey]:
@@ -97,7 +116,13 @@ def recursively_save_dict_contents_to_group(h5file, path, dic):
         elif isinstance(item, (list, tuple)):
             for i, x in enumerate(item):
                 newpath = '/'.join((path, str(key), str(i)))
-                recursively_save_dict_contents_to_group(h5file, newpath, x)
+                if isinstance(x, dict):
+                    recursively_save_dict_contents_to_group(h5file, newpath, x)
+                elif isinstance(x, datetime.datetime):
+                    h5file[newpath] = x.timestamp()
+                else:
+                    raise ValueError('Cannot save a list of %s ' % type(item))
+
 
         # Save strings, scalars or array of scalars
         elif (np.isscalar(item) or
@@ -211,55 +236,6 @@ def combine_constants(ctimes_a, ctimes_b):
     return ctime, icomb
 
 
-def plot_heatmap(data, x_title='Pixel X', y_title='Pixel Y', x_labels='',
-                 title='Average over pixels and cells', label='', fname='',
-                 vmax=None, vmin=None, ytickspos=None, yticks=None):
-    """Plotting heatmap from 2D data
-
-    Args:
-        data: 2D dataset.
-        x_title: Label for x axis
-        y_title: Label for y axis
-        title: Title on the top side of a plot
-        x_labels: Ticks for X axis (list or array)
-        yticks: Ticks for Y axis (list or array)
-        ytickspos: Positions of ticks for Y axis (list or array)
-        vmax: Maximum value of heatmap
-        vmin: Minimum value of heatmap
-        label: Label on the right side of a plot
-        fname: Name of output file (including path)
-    """
-
-    fig = plt.figure(figsize=(12, 12))
-    ax = fig.add_subplot(111)
-
-    if vmin is None:
-        vmin = np.nanmin(data[np.nonzero(data)])
-
-    seaborn.heatmap(data, xticklabels=10, yticklabels=32, cmap='jet',
-                    vmin=vmin, vmax=vmax, cbar_kws={"label": label})
-    ax.set_xticklabels(x_labels, minor=False, rotation=90)
-    ax.figure.axes[-1].yaxis.label.set_size(20)
-
-    plt.xticks(np.arange(data[0, :].size) + 0.3, )
-
-    plt.xlabel(x_title, size=18)
-    plt.ylabel(y_title, size=18)
-    plt.title(title, size=18)
-
-    if ytickspos is not None:
-        plt.yticks(ytickspos, yticks)
-
-    plt.subplots_adjust(wspace=0.2, hspace=0.2)
-
-    if fname != '':
-        fig.savefig(fname, bbox_inches='tight')
-
-
-# The following functions are used to combine two lists in one.
-# Elements present in both lists counted only once.
-# Output list is sorted.
-
 def to_multiset(x):
     """
     Convert list to multiset
@@ -324,3 +300,107 @@ def multi_intersect(a, b):
     aa = to_multiset(a)
     bb = to_multiset(b)
     return from_multiset(aa & bb)
+
+
+def HMCombine(data, fname=None, type=1, **kwargs):
+    """
+    Plot heatmap for calibration report
+
+    :param data: data to plot
+    :param fname: file name of output file
+    :param type: type of figure
+    :param kwargs: other keywords supported by pyDetLib heatmapPlot
+    """
+
+    from XFELDetAna import xfelpyanatools as xana
+
+    fig = plt.figure(figsize=(10, 12))
+    ax = fig.add_subplot(111)
+
+    xana.heatmapPlot(data, add_panels=False, cmap='viridis',
+                     cb_pad=0.6 if type == 1 else 0.1,
+                     use_axis=ax,
+                     **kwargs)
+    plt.setp(ax.yaxis.get_majorticklabels(), rotation=90)
+
+    pad = kwargs.get('pad', [0.125, 0.125, 0.1, 0.18])
+
+    pad_b = pad[0]
+    pad_l = pad[1]
+    pad_t = pad[2]
+    pad_r = pad[3]
+    mar = 0.003
+
+    vmin = kwargs.get('vmin', None)
+    vmax = kwargs.get('vmax', None)
+
+    h_frame = (1 - pad_b - pad_t)
+    w_frame = 1 - pad_l - pad_r
+
+    if type == 2:
+        ax.tick_params(axis='y', which='major', pad=50)
+        for y in range(data.shape[0]):
+
+            h_frame = (1 - pad_b - pad_t) / data.shape[0]
+            w_frame = 1 - pad_l - pad_r
+
+            mean = np.nanmean(data[y])
+            if vmin and vmax:
+                mean = np.nanmean(
+                    data[y, np.where((data[y] > vmin) & (data[y] < vmax))])
+
+            ax = plt.axes(
+                [pad_l, pad_b + h_frame * y + mar, w_frame, h_frame - 2 * mar],
+                frame_on=False,
+                yticks=[mean],
+                yticklabels=['{:4.2f}'.format(mean)],
+                xticks=[],
+                xticklabels=[]
+                )
+            ax.tick_params(axis='y', which='major', pad=25)
+
+            if vmin and vmax:
+                ax.set_ylim([vmin, vmax])
+
+            d = [{'x': np.arange(data.shape[1]),
+                  'y': data[y],
+                  'drawstyle': 'steps-mid',
+                  'linestyle': 'dotted',
+                  # 'marker': '^',
+                  'linewidth': 2,
+
+                  'color': 'white',
+                  },
+                 {'x': np.array([0, data.shape[1] - 1]),
+                  'y': np.array([mean, mean]),
+                  'drawstyle': 'steps-mid',
+                  'linewidth': 1.0,
+                  'linestyle': 'dotted',
+                  'color': 'white',
+                  },
+                 ]
+
+            y_lab = ''
+            if y == data.shape[0] / 2:
+                y_lab = 'Average over time'
+
+            _ = xana.simplePlot(d,  # aspect=1.6,
+                                x_label="",
+                                y_label=y_lab,
+                                use_axis=ax,
+                                y_log=False)
+    elif type == 1:
+
+        ax2 = plt.axes([pad_l, pad_b, w_frame, h_frame / 16.], frame_on=False,
+                       yticks=range(3), yticklabels=[32, 16, 0],
+                       xticks=[], xticklabels=[]
+                       )
+        ax2.yaxis.set_label_position("right")
+        ax2.set_ylabel('Memory cell ID', color='r')
+        ax2.tick_params('y', colors='r', right=True, left=False,
+                        labelright=True, labelleft=False, )
+    else:
+        pass
+
+    if fname:
+        fig.savefig(fname, bbox_inches='tight')
diff --git a/notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb b/notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb
index f87e744d5..ebd3e6629 100644
--- a/notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb
+++ b/notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb
@@ -33,10 +33,14 @@
     "constants = [\"Noise\", \"SlopesFF\", \"SlopesPC\", \"Offset\"]  # Constants to plot\n",
     "modules = [0]  # Modules, range allowed\n",
     "bias_voltages = [300, 500]  # Bias voltage\n",
-    "max_cells = [32, 64, 74, 128, 176]  # Number of used memory cells. Typically: 4,32,64,128,176.\n",
+    "mem_cells = [128, 176]  # Number of used memory cells. Typically: 4,32,64,128,176.\n",
     "photon_energy = 9.2  # Photon energy of the beam\n",
-    "out_folder = \"/gpfs/exfel/data/scratch/karnem/testAGIPD16_9/\"  # Output folder, required\n",
-    "cal_db_timeout = 280000 # timeout on caldb requests\\n\","
+    "out_folder = \"/gpfs/exfel/data/scratch/karnem/testAGIPD16_14/\"  # Output folder, required\n",
+    "use_existing = \"/gpfs/exfel/data/scratch/karnem/testAGIPD16_9/\" # Input folder\n",
+    "cal_db_timeout = 1200000 # timeout on caldb requests\",\n",
+    "detectorDB = \"AGIPD1M1\"  # detector entry in the DB to investigate\n",
+    "dclass = \"AGIPD\"  # Detector class\n",
+    "cal_db_interface = \"tcp://max-exfl016:8015#8025\" # the database interface to use"
    ]
   },
   {
@@ -52,7 +56,7 @@
     "import numpy as np\n",
     "import matplotlib\n",
     "\n",
-    "matplotlib.use(\"agg\")\n",
+    "##matplotlib.use(\"agg\")\n",
     "import matplotlib.pyplot as plt\n",
     "% matplotlib inline\n",
     "\n",
@@ -78,17 +82,19 @@
    "source": [
     "# Prepare variables\n",
     "interval = 1  # interval for evaluation in days\n",
-    "detectorDB = \"AGIPD1M1\"  # detector entry in the DB to investigate\n",
-    "dclass = \"AGIPD\"  # Detector class\n",
     "\n",
     "if modules[0] == -1:\n",
     "    modules = list(range(16))\n",
     "\n",
+    "in_mod_names = []\n",
+    "for mod in modules:\n",
+    "    in_mod_names.append(\"Q{}M{}\".format(mod // 4 + 1, mod % 4 + 1))\n",
+    "\n",
     "constantsDark = {\"SlopesFF\": 'BadPixelsFF',\n",
     "                 'SlopesPC': 'BadPixelsPC',\n",
     "                 'Noise': 'BadPixelsDark',\n",
     "                 'Offset': 'BadPixelsDark'}\n",
-    "print(constantsDark)\n",
+    "print('Bad pixels data: ', constantsDark)\n",
     "\n",
     "# Define parameters in order to perform loop over time stamps\n",
     "start = datetime.datetime.now() if start_date.upper() == \"NOW\" else dateutil.parser.parse(\n",
@@ -105,8 +111,13 @@
     "det = getattr(Detectors, detectorDB)\n",
     "dconstants = getattr(Constants, dclass)\n",
     "\n",
-    "cal_db_interface = \"tcp://max-exfl016:80\" + str(np.random.randint(15, 25))\n",
-    "print(cal_db_interface)\n"
+    "if \"#\" in cal_db_interface:\n",
+    "    prot, serv, ran = cal_db_interface.split(\":\")\n",
+    "    r1, r2 = ran.split(\"#\")\n",
+    "    cal_db_interface = \":\".join(\n",
+    "        [prot, serv, str(np.random.randint(int(r1), int(r2)))])\n",
+    "\n",
+    "print('CalDB Interface {}'.format(cal_db_interface))"
    ]
   },
   {
@@ -116,7 +127,18 @@
     "collapsed": true
    },
    "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
    "source": [
+    "import copy\n",
+    "\n",
     "def prepare_to_store(a, nMem):\n",
     "    shape = list(a.shape[:2])+[nMem,2]\n",
     "    b = np.full(shape, np.nan)\n",
@@ -125,9 +147,9 @@
     "\n",
     "def get_rebined(a, rebin):\n",
     "    return a.reshape(\n",
-    "                a.shape[0] / rebin[0],\n",
+    "                int(a.shape[0] / rebin[0]),\n",
     "                rebin[0],\n",
-    "                a.shape[1] / rebin[1],\n",
+    "                int(a.shape[1] / rebin[1]),\n",
     "                rebin[1],\n",
     "                a.shape[2],\n",
     "                a.shape[3])\n",
@@ -138,8 +160,11 @@
     "\n",
     "ret_constants = {}\n",
     "\n",
+    "if use_existing != '':\n",
+    "    mem_cells = []\n",
+    "\n",
     "# Loop over max_memory cells\n",
-    "for the_max_cells in max_cells:\n",
+    "for the_mem_cells in mem_cells:\n",
     "\n",
     "    # Loop over bias voltages\n",
     "    for bias_voltage in bias_voltages:\n",
@@ -167,26 +192,27 @@
     "                                  \"SlopesPC\"] or \"DARK\" in const.upper()):\n",
     "                        dcond = Conditions.Dark\n",
     "                        mcond = getattr(dcond, dclass)(\n",
-    "                            memory_cells=the_max_cells,\n",
+    "                            memory_cells=the_mem_cells,\n",
     "                            bias_voltage=bias_voltage)\n",
     "                    else:\n",
     "                        dcond = Conditions.Illuminated\n",
     "                        mcond = getattr(dcond, dclass)(\n",
-    "                            memory_cells=the_max_cells,\n",
+    "                            memory_cells=the_mem_cells,\n",
     "                            bias_voltage=bias_voltage,\n",
     "                            photon_energy=photon_energy)\n",
     "\n",
-    "                    print('Request: ', const, qm, the_max_cells, bias_voltage,\n",
+    "                    print('Request: ', const, qm, the_mem_cells, bias_voltage,\n",
     "                          creation_time)\n",
     "                    cdata, ctime = get_from_db(getattr(det, qm),\n",
     "                                               getattr(dconstants, const)(),\n",
-    "                                               mcond,\n",
+    "                                               copy.deepcopy(mcond),\n",
     "                                               None,\n",
     "                                               cal_db_interface,\n",
     "                                               creation_time=creation_time,\n",
     "                                               verbosity=0,\n",
-    "                                               timeout=cal_db_timeout)\n",
-    "\n",
+    "                                               timeout=cal_db_timeout,\n",
+    "                                             meta_only=True )\n",
+    "            \n",
     "                    if ctime is None or cdata is None:\n",
     "                        print('Time or Data is None')\n",
     "                        break\n",
@@ -225,13 +251,14 @@
     "                        cdataBP, ctimeBP = get_from_db(getattr(det, qm),\n",
     "                                                       getattr(dconstants,\n",
     "                                                               constantsDark[const])(),\n",
-    "                                                       mcond,\n",
+    "                                                       copy.deepcopy(mcond),\n",
     "                                                       None,\n",
     "                                                       cal_db_interface,\n",
     "                                                       creation_time=(\n",
     "                                                                   creation_time + step + step + step + step),\n",
     "                                                       verbosity=0,\n",
-    "                                                       timeout=cal_db_timeout)\n",
+    "                                                       timeout=cal_db_timeout,\n",
+    "                                                       meta_only=True)\n",
     "                        ctimeBP = ctimeBP.calibration_constant_version.begin_at\n",
     "\n",
     "                        if cdataBP is None:\n",
@@ -314,8 +341,10 @@
    },
    "outputs": [],
    "source": [
-    "save_dict_to_hdf5(ret_constants,\n",
-    "                  out_folder + '/CalDBAna_AGIPD_{}.h5'.format(modules[0]))\n"
+    "if use_existing == \"\":\n",
+    "    print('Save data to /CalDBAna_{}_{}.h5'.format(dclass, modules[0]))\n",
+    "    save_dict_to_hdf5(ret_constants,\n",
+    "                      '{}/CalDBAna_{}_{}.h5'.format(out_folder, dclass, modules[0]))"
    ]
   },
   {
@@ -327,7 +356,13 @@
    },
    "outputs": [],
    "source": [
-    "ret_constants = load_data_from_hdf5(out_folder + '/CalDBAna_AGIPD_*.h5')\n"
+    "if use_existing == \"\":\n",
+    "    fpath = '{}/CalDBAna_{}_*.h5'.format(out_folder, dclass)\n",
+    "else:\n",
+    "    fpath = '{}/CalDBAna_{}_*.h5'.format(use_existing, dclass)\n",
+    "\n",
+    "print('Load data from {}'.format(fpath))\n",
+    "ret_constants = load_data_from_hdf5(fpath)"
    ]
   },
   {
@@ -338,8 +373,9 @@
    },
    "outputs": [],
    "source": [
-    "# Combine Gain FF and PC\n",
+    "print ('Combine Gain FF and PC and Noise in [e-]')\n",
     "ret_constants[\"Gain\"] = {}\n",
+    "ret_constants[\"Noise-e\"] = {}\n",
     "\n",
     "for module in list(range(16)):\n",
     "    if (\"SlopesFF\" not in ret_constants or\n",
@@ -381,40 +417,32 @@
     "        gain_vs_time.append(cdataFF_vs_time[iFF] * cdataPC_vs_time[iPC])\n",
     "\n",
     "    print(np.array(gain_vs_time).shape)\n",
+    "    \n",
+    "    ctime_ts = [t.timestamp() for t in ctime]\n",
+    "    \n",
     "    ret_constants[\"Gain\"][qm][\"ctime\"] = ctime\n",
-    "    ret_constants[\"Gain\"][qm][\"data\"] = gain_vs_time\n",
-    "    ret_constants[\"Gain\"][qm][\"dataBP\"] = gain_vs_time\n",
-    "    ret_constants[\"Gain\"][qm][\"nBP\"] = gain_vs_time\n",
-    "\n",
-    "# calculate Noise in terms of electrons\n",
-    "ret_constants[\"Noise_e-\"] = {}\n",
-    "for module in list(range(16)):\n",
-    "\n",
-    "    if (\"Gain\" not in ret_constants or\n",
-    "            \"Noise\" not in ret_constants):\n",
-    "        break\n",
-    "\n",
-    "    qm = \"Q{}M{}\".format(module // 4 + 1, module % 4 + 1)\n",
-    "    print(qm)\n",
+    "    ret_constants[\"Gain\"][qm][\"data\"] = np.array(gain_vs_time)\n",
+    "    ret_constants[\"Gain\"][qm][\"dataBP\"] = np.array(gain_vs_time)\n",
+    "    ret_constants[\"Gain\"][qm][\"nBP\"] = np.array(gain_vs_time)\n",
     "\n",
-    "    if (qm not in ret_constants[\"Gain\"] or\n",
-    "            qm not in ret_constants[\"Noise\"]):\n",
+    "    if \"Noise\" not in ret_constants:\n",
     "        continue\n",
     "\n",
-    "    ret_constants[\"Noise_e-\"][qm] = {}\n",
+    "    if qm not in ret_constants[\"Noise\"]:\n",
+    "        continue\n",
     "\n",
-    "    dataG = ret_constants[\"Gain\"][qm]\n",
     "    dataN = ret_constants[\"Noise\"][qm]\n",
-    "\n",
-    "    if (len(dataG) == 0 or len(dataN) == 0):\n",
+    "    if len(dataN) == 0:\n",
     "        continue\n",
     "\n",
-    "    ctimesG = np.array(dataG[\"ctime\"])\n",
+    "    ret_constants[\"Noise-e\"][qm] = {}\n",
+    "            \n",
+    "    ctimesG = np.array(ctime)\n",
     "    ctimesN = np.array(dataN[\"ctime\"])\n",
     "\n",
     "    ctime, icomb = combine_constants(ctimesG, ctimesN)\n",
     "\n",
-    "    cdataG_vs_time = np.array(dataG[\"data\"])\n",
+    "    cdataG_vs_time = np.array(gain_vs_time)\n",
     "    cdataN_vs_time = np.array(dataN[\"data\"])[..., 0]\n",
     "\n",
     "    data_vs_time = []\n",
@@ -423,10 +451,49 @@
     "            cdataN_vs_time[iN] * (8000 / 3.6 / 67.) / cdataG_vs_time[iG])\n",
     "\n",
     "    print(np.array(gain_vs_time).shape)\n",
-    "    ret_constants[\"Noise_e-\"][qm][\"ctime\"] = ctime\n",
-    "    ret_constants[\"Noise_e-\"][qm][\"data\"] = data_vs_time\n",
-    "    ret_constants[\"Noise_e-\"][qm][\"dataBP\"] = data_vs_time\n",
-    "    ret_constants[\"Noise_e-\"][qm][\"nBP\"] = data_vs_time\n"
+    "    ctime_ts = [t.timestamp() for t in ctime]\n",
+    "    ret_constants[\"Noise-e\"][qm][\"ctime\"] = ctime\n",
+    "    ret_constants[\"Noise-e\"][qm][\"data\"] = np.array(data_vs_time)\n",
+    "    ret_constants[\"Noise-e\"][qm][\"dataBP\"] = np.array(data_vs_time)\n",
+    "    ret_constants[\"Noise-e\"][qm][\"nBP\"] = np.array(data_vs_time)\n",
+    "    \n",
+    "save_dict_to_hdf5({k:v for k,v in ret_constants.items() if k in ['Gain', 'Noise-e']},\n",
+    "                  '{}/CalDBAna_{}_Gain.h5'.format(out_folder, dclass))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "# Parameters for plotting\n",
+    "\n",
+    "# Define range for plotting\n",
+    "rangevals = {\n",
+    "    \"Offset\": [[800., 1500], [600, 900]],\n",
+    "    \"Noise\": [[2.0, 16], [1.0, 7.0]],\n",
+    "    \"Gain\": [[20, 30], [20, 30]],\n",
+    "    \"Noise-e\": [[100., 600.], [100., 600.]],\n",
+    "    \"SlopesCI\": [[0.95, 1.05], [0.0, 0.5]],\n",
+    "    \"SlopesFF\": [[0.8, 1.2], [0.8, 1.2]]\n",
+    "}\n",
+    "\n",
+    "nMemToShow = 32\n",
+    "\n",
+    "keys = {\n",
+    "    'Mean': ['data', '', 'Mean over pixels'],\n",
+    "    'std': ['dataStd', '', '$\\sigma$ over pixels'],\n",
+    "    'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n",
+    "    'NBP': ['nBP', 'Fraction of BP', 'Fraction of BP'],\n",
+    "    'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n",
+    "    'stdASIC': ['', '', '$\\sigma$ over ASICs'],\n",
+    "    'stdCell': ['', '', '$\\sigma$ over Cells'],\n",
+    "}\n",
+    "\n",
+    "gain_name = ['High', 'Medium', 'Low']"
    ]
   },
   {
@@ -438,17 +505,19 @@
    },
    "outputs": [],
    "source": [
-    "# Plot calibration constants as heatmaps\n",
+    "print('Plot calibration constants')\n",
     "\n",
     "# loop over constat type\n",
     "for const, modules in ret_constants.items():\n",
     "\n",
     "    # Loop over gain\n",
     "    for gain in range(2):\n",
-    "        print(const, len(modules), gain)\n",
+    "        print('Const: {}, gain {}'.format(const, gain))\n",
     "\n",
-    "        if const in [\"Gain\", \"Noise_e-\"] and gain > 0:\n",
-    "            break\n",
+    "        if const in [\"Gain\", \"Noise-e\"] and gain == 1:\n",
+    "            continue\n",
+    "        else:\n",
+    "            pass\n",
     "\n",
     "        # loop over modules\n",
     "        mod_data = {}\n",
@@ -457,21 +526,11 @@
     "        mod_names = []\n",
     "        mod_times = []\n",
     "\n",
-    "        # Define range for plotting\n",
-    "        rangevals = {}\n",
-    "        rangevals[\"Offset\"] = [4000. + gain * 2500, 5500. + gain * 3000]\n",
-    "        rangevals[\"Noise\"] = [2.5 + gain * 5, 15. + gain * 2]\n",
-    "        rangevals[\"Gain\"] = [0.8, 1.2]\n",
-    "        rangevals[\"Noise_e-\"] = [85., 500.]\n",
-    "        rangevals[\"SlopesPC\"] = [20.0 + gain * (-19.4), 30. + gain * (-28.8)]       \n",
-    "        rangevals[\"SlopesFF\"] = [0.8 + gain * (-0.2), 1.2]\n",
-    "        nMemToShow = 32\n",
-    "            \n",
-    "        keys = [['data', 'Mean'], ['dataStd', 'Std'], ['dataBP', 'Mean(BP)'],\n",
-    "                ['nBP', 'NBP'], ['dataBPStd', 'Std(BP)']]\n",
-    "            \n",
     "        # Loop over modules\n",
     "        for mod, data in modules.items():\n",
+    "            if mod not in in_mod_names:\n",
+    "                continue\n",
+    "\n",
     "            print(mod)\n",
     "\n",
     "            ctimes = np.array(data[\"ctime\"])\n",
@@ -481,54 +540,56 @@
     "                cmdata = np.array(data[\"mdata\"])\n",
     "                for i, tick in enumerate(ctimes_ticks):\n",
     "                    ctimes_ticks[i] = ctimes_ticks[i] + \\\n",
-    "                                      ', V={:1.0f}'.format( cmdata[i]['Sensor Bias Voltage']) + \\\n",
-    "                                      ', M={:1.0f}'.format(cmdata[i]['Memory cells'])\n",
+    "                        ', V={:1.0f}'.format(cmdata[i]['Sensor Bias Voltage']) + \\\n",
+    "                        ', M={:1.0f}'.format(\n",
+    "                        cmdata[i]['Memory cells'])\n",
     "\n",
     "            sort_ind = np.argsort(ctimes_ticks)\n",
     "            ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n",
-    "            \n",
+    "\n",
+    "            # Create sorted by data dataset\n",
     "            rdata = {}\n",
-    "            for key in keys:\n",
-    "                if key[0] in data:\n",
-    "                    rdata[key[1]] = np.array(data[key[0]])[sort_ind]\n",
-    "            \n",
-    "            print(rdata['Mean'].shape)\n",
+    "            for key, item in keys.items():\n",
+    "                if item[0] in data:\n",
+    "                    rdata[key] = np.array(data[item[0]])[sort_ind]\n",
+    "\n",
+    "            # print(rdata['Mean'].shape)\n",
     "            nTimes = rdata['Mean'].shape[0]\n",
     "            nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n",
     "            nBins = nMemToShow * nPixels\n",
     "\n",
     "            # Select gain\n",
-    "            if const not in [\"Gain\", \"Noise_e-\"]:\n",
+    "            if const not in [\"Gain\", \"Noise-e\"]:\n",
     "                for key in rdata:\n",
     "                    rdata[key] = rdata[key][..., gain]\n",
     "\n",
     "            # Avoid to low values\n",
-    "            if const in [\"Noise\", \"Offset\", \"Noise_e-\"]:\n",
+    "            if const in [\"Noise\", \"Offset\", \"Noise-e\"]:\n",
     "                rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n",
-    "                if 'Mean(BP)' in rdata:\n",
-    "                    rdata['Mean(BP)'][rdata['Mean(BP)'] < 0.1] = np.nan\n",
-    "                    \n",
+    "                if 'MeanBP' in rdata:\n",
+    "                    rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n",
+    "\n",
     "            if 'NBP' in rdata:\n",
     "                rdata[\"NBP\"][rdata[\"NBP\"] == 4096] = np.nan\n",
     "                rdata[\"NBP\"] = rdata[\"NBP\"] / (64 * 64) * 100\n",
-    "                \n",
-    "            # ASICs over cells.\n",
+    "\n",
+    "            # Reshape: ASICs over cells for plotting\n",
     "            pdata = {}\n",
     "            for key in rdata:\n",
-    "                pdata[key] = rdata[key][:, :, :, :nMemToShow].reshape(nTimes,nBins).swapaxes(0, 1)\n",
+    "                pdata[key] = rdata[key][:, :, :, :nMemToShow].reshape(\n",
+    "                    nTimes, nBins).swapaxes(0, 1)\n",
     "\n",
     "            # Summary over ASICs\n",
     "            adata = {}\n",
     "            for key in rdata:\n",
     "                adata[key] = np.nanmean(rdata[key], axis=(1, 2)).swapaxes(0, 1)\n",
-    "            \n",
-    "            \n",
-    "            # Summary information over modules  \n",
+    "\n",
+    "            # Summary information over modules\n",
     "            for key in pdata:\n",
     "                if key not in mod_data:\n",
     "                    mod_data[key] = []\n",
     "                mod_data[key].append(np.nanmean(pdata[key], axis=0))\n",
-    "                \n",
+    "\n",
     "            mod_data['stdASIC'].append(np.nanstd(\n",
     "                np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=(1, 2)), axis=1))\n",
     "            mod_data['stdCell'].append(np.nanstd(\n",
@@ -541,56 +602,45 @@
     "            for key in pdata:\n",
     "                vmin = None\n",
     "                vmax = None\n",
-    "                if const in rangevals and key in ['Mean', 'Mean(BP)']:\n",
-    "                    vmin = rangevals[const][0]\n",
-    "                    vmax = rangevals[const][1]\n",
-    "                plot_heatmap(pdata[key],\n",
-    "                         x_title='Creation Time', y_title='ASIC devided to Momery cells',\n",
-    "                         x_labels=ctimes_ticks, title='{} for {}, module {}, gain {}'.format(key, const, mod, gain),\n",
-    "                         label='Mean for {}'.format(const), \n",
-    "                         fname='{}/{}_ASIC_cell_{}_{}_g{}.pdf'.format(out_folder, const, key, mod, gain),\n",
-    "                         vmin=vmin, vmax=vmax,\n",
-    "                         ytickspos=np.arange(nBins, step=nMemToShow), yticks=np.arange(nPixels)[::-1]+1)\n",
-    "        \n",
-    "\n",
-    "                plot_heatmap(adata[key],\n",
-    "                         x_title='Creation Time', y_title='Momery cells',\n",
-    "                         x_labels=ctimes_ticks, title='{} for {}, module {}, gain {}'.format(key, const, mod, gain),\n",
-    "                         label='Mean for {}'.format(const), \n",
-    "                         fname='{}/{}_cell_{}_{}_g{}.pdf'.format(out_folder, const, key, mod, gain),\n",
-    "                         vmin=vmin, vmax=vmax,\n",
-    "                         )\n",
-    "\n",
-    "\n",
-    "        # Incert nans to get array-like list of data\n",
-    "        uTime = mod_times[0]\n",
-    "        for tlist in mod_times:\n",
-    "            uTime = sorted(multi_union(uTime, tlist))\n",
-    "\n",
-    "        for i, tlist in enumerate(mod_times):\n",
-    "            for t, time in enumerate(uTime):\n",
-    "                if t == len(tlist) or time != tlist[t]:\n",
-    "                    tlist.insert(t, time)\n",
-    "                    for key in mod_data:\n",
-    "                        mod_data[key][i] = np.insert(mod_data[key][i], t, np.nan)\n",
-    "\n",
-    "        # Plotting\n",
-    "        nModules = len(mod_names)\n",
-    "        for key in mod_data:\n",
-    "            vmin = None\n",
-    "            vmax = None\n",
-    "            if const in rangevals and key in ['Mean', 'Mean(BP)']:\n",
-    "                vmin = rangevals[const][0]\n",
-    "                vmax = rangevals[const][1]\n",
-    "            plot_heatmap(np.array(mod_data[key]),\n",
-    "                     x_title='Creation Time', y_title='Modules',\n",
-    "                     x_labels=ctimes_ticks,\n",
-    "                     title='{} for {}, all modules, gain {}'.format(key, const, gain),\n",
-    "                     label='{} for {}'.format(key, const),\n",
-    "                     fname='{}/{}_all_{}_g{}.pdf'.format(out_folder, const, key, gain),\n",
-    "                     vmin=vmin, vmax=vmax,\n",
-    "                     ytickspos=np.arange(nModules)[::-1]+0.8, yticks=mod_names)\n",
-    "            \n"
+    "                if const in rangevals and key in ['Mean', 'MeanBP']:\n",
+    "                    vmin = rangevals[const][gain][0]\n",
+    "                    vmax = rangevals[const][gain][1]\n",
+    "\n",
+    "                if key == 'NBP':\n",
+    "                    unit = '[%]'\n",
+    "                else:\n",
+    "                    unit = '[ADU]'\n",
+    "                    if const == 'Noise-e':\n",
+    "                        unit = '[$e^-$]'\n",
+    "\n",
+    "                title = '{}, module {}, {} gain, {}'.format(\n",
+    "                    const, mod, gain_name[gain], keys[key][1])\n",
+    "                cb_label = '{}, {} {}'.format(const, keys[key][2], unit)\n",
+    "\n",
+    "                HMCombine(pdata[key][::-1],\n",
+    "                          x_label='Creation Time', y_label='ASIC ID',\n",
+    "                          x_ticklabels=ctimes_ticks,\n",
+    "                          x_ticks=np.arange(len(ctimes_ticks))+0.3,\n",
+    "                          title=title, cb_label=cb_label,\n",
+    "                          vmin=vmin, vmax=vmax,\n",
+    "                          fname='{}/{}_{}_g{}_ASIC_{}.png'.format(\n",
+    "                                  out_folder, const, mod, gain, key),\n",
+    "                          y_ticks=np.arange(nBins, step=nMemToShow)+16,\n",
+    "                          y_ticklabels=np.arange(nPixels)[::-1]+1,\n",
+    "                          pad=[0.125, 0.125, 0.12, 0.185])\n",
+    "\n",
+    "                HMCombine(adata[key], type=0,\n",
+    "                          x_label='Creation Time', y_label='Memory cell ID',\n",
+    "                          x_ticklabels=ctimes_ticks,\n",
+    "                          x_ticks=np.arange(len(ctimes_ticks))+0.3,\n",
+    "                          title=title, cb_label=cb_label,\n",
+    "                          fname='{}/{}_{}_g{}_MEM_{}.png'.format(\n",
+    "                                  out_folder, const, mod, gain, key),\n",
+    "                          vmin=vmin, vmax=vmax)\n",
+    "\n",
+    "                # break\n",
+    "            #break\n",
+    "        #break"
    ]
   }
  ],
@@ -610,7 +660,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.6.6"
+   "version": "3.4.3"
   }
  },
  "nbformat": 4,
diff --git a/notebooks/AGIPD/PlotFromCalDB_Summary_AGIPD_NBC.ipynb b/notebooks/AGIPD/PlotFromCalDB_Summary_AGIPD_NBC.ipynb
new file mode 100644
index 000000000..016a8ef0d
--- /dev/null
+++ b/notebooks/AGIPD/PlotFromCalDB_Summary_AGIPD_NBC.ipynb
@@ -0,0 +1,286 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Statistical analysis of calibration factors#\n",
+    "\n",
+    "Author: Mikhail Karnevskiy, Steffen Hauf, Version 0.2\n",
+    "\n",
+    "Plot calibration constants for AGIPD1M1 detector aggregated within detector modules. Input information is taken from folder `use_existing`. Corresponding files are prepared by `PlotFromCalDB` notebook."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "cluster_profile = \"noDB\"  # The ipcluster profile to use\n",
+    "out_folder = \"/gpfs/exfel/data/scratch/karnem/testAGIPD16_14/\"  # Output folder, required\n",
+    "use_existing = \"/gpfs/exfel/data/scratch/karnem/testAGIPD16_21/\" # Input folder\n",
+    "dclass = \"AGIPD\"  # Detector class"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "from cal_tools.ana_tools import *\n",
+    "import numpy as np\n",
+    "import matplotlib\n",
+    "matplotlib.use(\"agg\")\n",
+    "% matplotlib inline\n",
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "import warnings\n",
+    "warnings.filterwarnings('ignore')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "if use_existing == '':\n",
+    "    use_existing = out_folder"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "print('Load data from {}/CalDBAna_{}_*.h5'.format(use_existing, dclass))\n",
+    "ret_constants = load_data_from_hdf5(\n",
+    "    '{}/CalDBAna_{}_*.h5'.format(use_existing, dclass))\n",
+    "\n",
+    "print('Evaluated data from {}/CalDBAna_{}_Gain*.h5'.format(out_folder, dclass))\n",
+    "ret_constants.update(load_data_from_hdf5(\n",
+    "    '{}/CalDBAna_{}_Gain*.h5'.format(out_folder, dclass)))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "# Parameters for plotting\n",
+    "\n",
+    "# Define range for plotting\n",
+    "rangevals = {\n",
+    "    \"Offset\": [[4000., 5500], [6500, 8500]],\n",
+    "    \"Noise\": [[2.5, 15], [7.5, 17.0]],\n",
+    "    \"Gain\": [[0.8, 1.2], [0.8, 1.2]],\n",
+    "    \"Noise-e\": [[85., 500.], [85., 500.]],\n",
+    "    \"SlopesCI\": [[0.95, 1.05], [0.0, 0.5]],\n",
+    "    \"SlopesPC\": [[22.0, 27.0], [-0.5, 1.5]],\n",
+    "    \"SlopesFF\": [[0.8, 1.2], [0.6, 1.2]]\n",
+    "}\n",
+    "\n",
+    "nMemToShow = 32\n",
+    "\n",
+    "keys = {\n",
+    "    'Mean': ['data', '', 'Mean over pixels'],\n",
+    "    'std': ['dataStd', '', '$\\sigma$ over pixels'],\n",
+    "    'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n",
+    "    'NBP': ['nBP', 'Fraction of BP', 'Fraction of BP'],\n",
+    "    'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n",
+    "    'stdASIC': ['', '', '$\\sigma$ over ASICs'],\n",
+    "    'stdCell': ['', '', '$\\sigma$ over Cells'],\n",
+    "}\n",
+    "\n",
+    "gain_name = ['High', 'Medium', 'Low']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "print('Plot calibration constants')\n",
+    "\n",
+    "# loop over constat type\n",
+    "for const, modules in ret_constants.items():\n",
+    "\n",
+    "    # Loop over gain\n",
+    "    for gain in range(2):\n",
+    "        print('Const: {}, gain : {}'.format(const, gain))\n",
+    "\n",
+    "        if const in [\"Gain\", \"Noise-e\"] and gain == 1:\n",
+    "            continue\n",
+    "\n",
+    "        # loop over modules\n",
+    "        mod_data = {}\n",
+    "        mod_data['stdASIC'] = []\n",
+    "        mod_data['stdCell'] = []\n",
+    "        mod_names = []\n",
+    "        mod_times = []\n",
+    "\n",
+    "        # Loop over modules\n",
+    "        for mod, data in modules.items():\n",
+    "            ctimes = np.array(data[\"ctime\"])\n",
+    "            ctimes_ticks = [x.strftime('%y-%m-%d') for x in ctimes]\n",
+    "\n",
+    "            if (\"mdata\" in data):\n",
+    "                cmdata = np.array(data[\"mdata\"])\n",
+    "                for i, tick in enumerate(ctimes_ticks):\n",
+    "                    ctimes_ticks[i] = ctimes_ticks[i] + \\\n",
+    "                        ', V={:1.0f}'.format(cmdata[i]['Sensor Bias Voltage']) + \\\n",
+    "                        ', M={:1.0f}'.format(\n",
+    "                        cmdata[i]['Memory cells'])\n",
+    "\n",
+    "            sort_ind = np.argsort(ctimes_ticks)\n",
+    "            ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n",
+    "\n",
+    "            # Create sorted by data dataset\n",
+    "            rdata = {}\n",
+    "            for key, item in keys.items():\n",
+    "                if item[0] in data:\n",
+    "                    rdata[key] = np.array(data[item[0]])[sort_ind]\n",
+    "\n",
+    "            nTimes = rdata['Mean'].shape[0]\n",
+    "            nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n",
+    "            nBins = nMemToShow * nPixels\n",
+    "\n",
+    "            # Select gain\n",
+    "            if const not in [\"Gain\", \"Noise-e\"]:\n",
+    "                for key in rdata:\n",
+    "                    rdata[key] = rdata[key][..., gain]\n",
+    "\n",
+    "            # Avoid to low values\n",
+    "            if const in [\"Noise\", \"Offset\", \"Noise-e\"]:\n",
+    "                rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n",
+    "                if 'MeanBP' in rdata:\n",
+    "                    rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n",
+    "\n",
+    "            if 'NBP' in rdata:\n",
+    "                rdata[\"NBP\"][rdata[\"NBP\"] == 4096] = np.nan\n",
+    "                rdata[\"NBP\"] = rdata[\"NBP\"] / (64 * 64) * 100\n",
+    "\n",
+    "            # Reshape: ASICs over cells for plotting\n",
+    "            pdata = {}\n",
+    "            for key in rdata:\n",
+    "                pdata[key] = rdata[key][:, :, :, :nMemToShow].reshape(\n",
+    "                    nTimes, nBins).swapaxes(0, 1)\n",
+    "\n",
+    "            # Summary information over modules\n",
+    "            for key in pdata:\n",
+    "                if key not in mod_data:\n",
+    "                    mod_data[key] = []\n",
+    "                mod_data[key].append(np.nanmean(pdata[key], axis=0))\n",
+    "\n",
+    "            mod_data['stdASIC'].append(np.nanstd(\n",
+    "                np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=(1, 2)), axis=1))\n",
+    "            mod_data['stdCell'].append(np.nanstd(\n",
+    "                np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=3), axis=(1, 2)))\n",
+    "\n",
+    "            mod_names.append(mod)\n",
+    "            mod_times.append(ctimes_ticks)\n",
+    "\n",
+    "        # Incert nans to get array-like list of data\n",
+    "        uTime = mod_times[0]\n",
+    "        for tlist in mod_times:\n",
+    "            uTime = sorted(multi_union(uTime, tlist))\n",
+    "\n",
+    "        for i, tlist in enumerate(mod_times):\n",
+    "            for t, time in enumerate(uTime):\n",
+    "                if t == len(tlist) or time != tlist[t]:\n",
+    "                    tlist.insert(t, time)\n",
+    "                    for key in mod_data:\n",
+    "                        mod_data[key][i] = np.insert(\n",
+    "                            mod_data[key][i], t, np.nan)\n",
+    "\n",
+    "        # Plotting\n",
+    "        nModules = len(mod_names)\n",
+    "        mod_idx = np.argsort(mod_names)\n",
+    "        for key in mod_data:\n",
+    "            vmin = None\n",
+    "            vmax = None\n",
+    "            if const in rangevals and key in ['Mean', 'MeanBP']:\n",
+    "                vmin = rangevals[const][gain][0]\n",
+    "                vmax = rangevals[const][gain][1]\n",
+    "            else:\n",
+    "                vmin = np.nanmin(np.array(mod_data[key]))\n",
+    "                vmax = np.nanmean(\n",
+    "                    np.array(mod_data[key])) + 2*np.nanstd(np.array(mod_data[key]))\n",
+    "\n",
+    "            if const in ['SlopesFF', 'SlopesPC', 'SlopesCI']:\n",
+    "                htype = 2\n",
+    "            else:\n",
+    "                htype = 0\n",
+    "\n",
+    "            if key == 'NBP':\n",
+    "                unit = '[%]'\n",
+    "            else:\n",
+    "                unit = '[ADU]'\n",
+    "                if const == 'Noise-e':\n",
+    "                    unit = '[$e^-$]'\n",
+    "\n",
+    "            title = '{}, All modules, {} gain, {}'.format(\n",
+    "                    const, gain_name[gain], keys[key][1])\n",
+    "            cb_label = '{}, {} {}'.format(const, keys[key][2], unit)\n",
+    "\n",
+    "            HMCombine(np.array(mod_data[key])[mod_idx][::-1],\n",
+    "                      y_ticks=np.arange(nModules)[::-1]+0.8,\n",
+    "                      y_ticklabels=np.array(mod_names)[mod_idx],\n",
+    "                      x_label='Creation Time', y_label='Module ID',\n",
+    "                      x_ticklabels=ctimes_ticks, x_ticks=np.arange(\n",
+    "                              len(ctimes_ticks))+0.3,\n",
+    "                      title=title, cb_label=cb_label,\n",
+    "                      fname='{}/{}_all_g{}_{}.png'.format(\n",
+    "                out_folder, const, gain, key),\n",
+    "                vmin=vmin, vmax=vmax,\n",
+    "                pad=[0.125, 0.151, 0.12, 0.17], type=htype)\n",
+    "\n",
+    "            #plt.show()\n",
+    "            #break\n",
+    "        #break\n",
+    "    #break"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.4.3"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/LPD/PlotFromCalDB.ipynb b/notebooks/LPD/PlotFromCalDB.ipynb
deleted file mode 100644
index fab2014d5..000000000
--- a/notebooks/LPD/PlotFromCalDB.ipynb
+++ /dev/null
@@ -1,342 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Statistical analysis of calibration factors#\n",
-    "\n",
-    "Author: Mikhail Karnevskiy, Steffen Hauf, Version 0.1\n",
-    "\n",
-    "A description of the notebook."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": [
-    "cluster_profile = \"noDB\" # The ipcluster profile to use\n",
-    "start_date = \"2018-07-01\" # date to start investigation interval from\n",
-    "end_date = \"now\" # date to end investigation interval at, can be \"now\"\n",
-    "interval = 3 # interval for evaluation in days\n",
-    "detectorDB = \"LPD1M1\" # detector entry in the DB to investigate\n",
-    "constants = [\"Offset\", \"Noise\"] # constants to plot\n",
-    "cal_db_interface = \"tcp://max-exfl016:8015\" # the database interface to use\n",
-    "bias_voltage = 500\n",
-    "max_cells = 128\n",
-    "modules = [3]\n",
-    "out_folder = \"/gpfs/exfel/data/scratch/karnem/test/\""
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": false,
-    "scrolled": true
-   },
-   "outputs": [],
-   "source": [
-    "import sys\n",
-    "from datetime import datetime\n",
-    "import warnings\n",
-    "warnings.filterwarnings('ignore')\n",
-    "\n",
-    "#print (sys.path)\n",
-    "\n",
-    "import os\n",
-    "import h5py\n",
-    "import numpy as np\n",
-    "import matplotlib\n",
-    "matplotlib.use(\"agg\")\n",
-    "import matplotlib.pyplot as plt\n",
-    "%matplotlib inline\n",
-    "\n",
-    "\n",
-    "\n",
-    "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n",
-    "from cal_tools.tools import gain_map_files, parse_runs, run_prop_seq_from_path, get_notebook_name, get_dir_creation_date, get_constant_from_db\n",
-    "from cal_tools.influx import InfluxLogger\n",
-    "from cal_tools.enums import BadPixels\n",
-    "from cal_tools.plotting import show_overview, plot_badpix_3d, create_constant_overview\n",
-    "\n",
-    "detectorDB = detectorDB.upper()\n",
-    "dclass = \"AGIPD\" if \"AGIPD\" in detectorDB else \"LPD\"\n",
-    "\n",
-    "import datetime\n",
-    "import dateutil.parser\n",
-    "\n",
-    "\n",
-    "\n",
-    "if modules[0] == -1:\n",
-    "    modules = list(range(16))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": false
-   },
-   "outputs": [],
-   "source": [
-    "import seaborn"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": [
-    "all_ready_printed = {}\n",
-    "def get_constant_from_db(device, constant, condition, empty_constant,\n",
-    "                         cal_db_interface, creation_time = None, print_once=True):\n",
-    "    from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n",
-    "    \n",
-    "    if device:\n",
-    "        metadata = ConstantMetaData()        \n",
-    "        metadata.calibration_constant = constant\n",
-    "        metadata.detector_condition = condition\n",
-    "        if creation_time is None:\n",
-    "            metadata.calibration_constant_version = Versions.Now(device=device)\n",
-    "        else:\n",
-    "            metadata.calibration_constant_version = Versions.Timespan(device=device,\n",
-    "                                                                      start=creation_time)\n",
-    "\n",
-    "        try:\n",
-    "            metadata.retrieve(cal_db_interface, when=creation_time.isoformat())\n",
-    "            if constant.name not in all_ready_printed or not print_once:\n",
-    "                all_ready_printed[constant.name] = True\n",
-    "                print(\"{} was injected on: {}\".format(constant.name, metadata.calibration_constant_version.begin_at))  \n",
-    "            return constant.data\n",
-    "        except Exception as e:\n",
-    "            return empty_constant\n",
-    "    else:\n",
-    "        return empty_constant"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": false,
-    "scrolled": true
-   },
-   "outputs": [],
-   "source": [
-    "dt = dateutil.parser.parse(start_date)\n",
-    "end = datetime.datetime.now() if end_date.upper() == \"NOW\" else dateutil.parser.parse(end_date)\n",
-    "step = datetime.timedelta(days=interval)\n",
-    "\n",
-    "det = getattr(Detectors, detectorDB)\n",
-    "dconstants = getattr(Constants, dclass)\n",
-    "ret_constants = {}\n",
-    "while dt < end:\n",
-    "    creation_time = dt\n",
-    "    print(\"Retreiving data from: {}\".format(creation_time.isoformat()))\n",
-    "    for const in constants:\n",
-    "        if not const in ret_constants:\n",
-    "            ret_constants[const] = {}\n",
-    "        dcond = Conditions.Dark if (const in [\"Offset\", \"Noise\"] or \"DARK\" in const.upper()) else Conditions.Illuminated\n",
-    "        for i in modules:\n",
-    "            qm = \"Q{}M{}\".format(i//4+1, i%4+1)\n",
-    "            cdata = get_constant_from_db(getattr(det, qm),\n",
-    "                                         getattr(dconstants, const)(),\n",
-    "                                         getattr(dcond, dclass)(memory_cells=max_cells, bias_voltage=bias_voltage),\n",
-    "                                         None,\n",
-    "                                         cal_db_interface,\n",
-    "                                         creation_time=creation_time)\n",
-    "\n",
-    "            print(\"Found constant {}: {}\".format(const, cdata is not None))\n",
-    "\n",
-    "            if not qm in ret_constants[const]:\n",
-    "                ret_constants[const][qm] = []\n",
-    "            \n",
-    "            if cdata is not None:\n",
-    "                carr = np.zeros((5, max_cells, 3))\n",
-    "                carr_glob = np.zeros((5, 3))\n",
-    "                carr_px = np.zeros((cdata.shape[0], max_cells, 3, 2))\n",
-    "                for g in range(3):\n",
-    "                    td = np.nanmean(cdata[...,g], axis=(0,1))\n",
-    "                    carr[0,:td.shape[0],g] = td\n",
-    "\n",
-    "                    td = np.nanmedian(cdata[...,g], axis=(0,1))\n",
-    "                    carr[1,:td.shape[0],g] = td\n",
-    "\n",
-    "                    td = np.nanmin(cdata[...,g], axis=(0,1))\n",
-    "                    carr[2,:td.shape[0],g] = td\n",
-    "\n",
-    "                    td = np.nanmax(cdata[...,g], axis=(0,1))\n",
-    "                    carr[3,:td.shape[0],g] = td\n",
-    "                    \n",
-    "                    td = np.nanstd(cdata[...,g], axis=(0,1))\n",
-    "                    carr[4,:td.shape[0],g] = td\n",
-    "\n",
-    "                    td = np.nanmean(cdata[...,g])\n",
-    "                    carr_glob[0, g] = td\n",
-    "\n",
-    "                    td = np.nanmedian(cdata[...,g])\n",
-    "                    carr_glob[1, g] = td\n",
-    "\n",
-    "                    td = np.nanmin(cdata[...,g])\n",
-    "                    carr_glob[2, g] = td\n",
-    "\n",
-    "                    td = np.nanmax(cdata[...,g])\n",
-    "                    carr_glob[3, g] = td\n",
-    "                    \n",
-    "                    td = np.nanstd(cdata[...,g])\n",
-    "                    carr_glob[3, g] = td\n",
-    "                    \n",
-    "                    carr_px[...,g, 0] = np.nanmedian(cdata[...,g], axis=0)\n",
-    "                    carr_px[...,g, 1] = np.nanmedian(cdata[...,g], axis=1)\n",
-    "\n",
-    "                ret_constants[const][qm].append((creation_time,(carr, carr_glob, carr_px)))\n",
-    "                \n",
-    "    dt += step"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": false,
-    "scrolled": false
-   },
-   "outputs": [],
-   "source": [
-    "import matplotlib.ticker as ticker\n",
-    "\n",
-    "\n",
-    "\n",
-    "\n",
-    "types = [\"mean\", \"median\", \"min\", \"max\", \"std\"]\n",
-    "colors = [\"red\", \"green\", \"orange\", \"blue\"]\n",
-    "skip = [False, False, False, False, False]\n",
-    "# loop over constat type\n",
-    "for const, modules in ret_constants.items():\n",
-    "    fig = plt.figure(figsize=(15,7))\n",
-    "    tt = 0\n",
-    "    print (const)\n",
-    "\n",
-    "    # loop over type of stat parameter\n",
-    "    for typ in range(len(types)):\n",
-    "        if skip[typ]:\n",
-    "            continue\n",
-    "        ax = plt.subplot2grid((np.count_nonzero(~np.array(skip)), 1), (tt, 0))\n",
-    "        \n",
-    "        # loop over modules\n",
-    "        for mod, data in modules.items():\n",
-    "            ctimes, cd = list(zip(*data))\n",
-    "            pmm, glob, _ = list(zip(*cd))\n",
-    "            pma = np.array(pmm)\n",
-    "            ga = np.array(glob)\n",
-    "            d = pma[:,typ,:,:]\n",
-    "\n",
-    "            if np.allclose(d, 0):\n",
-    "                continue\n",
-    "            dd = pma[:,typ,:,:]#-pma[0,typ,:,:])/pma[0,typ,:,:]\n",
-    "            y = dd.flatten()\n",
-    "            x = np.repeat(np.array(ctimes)[:,None],\n",
-    "                 dd[0,:,:].size, axis=1).flatten()\n",
-    "            hue = np.repeat(np.array(['gain 0', 'gain 1', 'gain 2'])[:,None],\n",
-    "                   dd[:,:,0].size, axis=1).swapaxes(0,1).flatten()\n",
-    "            seaborn.violinplot(x, y, hue, scale=\"width\", dodge=False, saturation=0.7)\n",
-    "\n",
-    "            #ax.set_ylim(-0.25, .25)\n",
-    "            \n",
-    "        if typ != len(types)-1:\n",
-    "            ax.axes.get_xaxis().set_visible(False)\n",
-    "        else:\n",
-    "            def format_date(x, pos=None):\n",
-    "                return ctimes[x].strftime('%d-%m')\n",
-    "            ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))\n",
-    "            ax.set_xlabel(\"Date\")\n",
-    "        ax.set_ylabel(\"{}\".format(types[typ]))\n",
-    "        \n",
-    "        tt += 1\n",
-    "    plt.subplots_adjust(wspace=0.2, hspace=0.2)\n",
-    "    \n",
-    "    if out_folder != \"\":\n",
-    "        fig.savefig(\"{}/{}_time_development.pdf\".format(out_folder, const), \n",
-    "             bbox_inches='tight')\n",
-    "    \n",
-    "\n",
-    "    fig = plt.figure(figsize=(15,7))\n",
-    "    ax = plt.subplot2grid((1, 1), (0, 0))\n",
-    "        \n",
-    "    # loop over modules\n",
-    "    for mod, data in modules.items():\n",
-    "        ctimes, cd = list(zip(*data))\n",
-    "        _, _, px = list(zip(*cd))\n",
-    "        px = np.array(px)\n",
-    "        print (px.shape)\n",
-    "        y = px[:,:,5,0,:].flatten()\n",
-    "        x = np.repeat(np.array(ctimes)[:,None],\n",
-    "                px[0,:,5,0,:].size, axis=1).flatten()\n",
-    "        hue = np.repeat(np.array(['px','py'])[:,None], px[:,:,5,0,0].size, \n",
-    "                axis=1).swapaxes(0,1).flatten()\n",
-    "\n",
-    "        seaborn.violinplot(x, y, hue, palette=\"muted\", split=True)\n",
-    "\n",
-    "        def format_date(x, pos=None):\n",
-    "            return ctimes[x].strftime('%d-%m')\n",
-    "        ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))\n",
-    "        ax.set_xlabel(\"Date\")\n",
-    "        ax.set_ylabel(\"Median over pixels\")\n",
-    "        \n",
-    "    plt.subplots_adjust(wspace=0.2, hspace=0.2)\n",
-    "    \n",
-    "    if out_folder != \"\":\n",
-    "        fig.savefig(\"{}/{}_pxtime_development.pdf\".format(out_folder, const),\n",
-    "             bbox_inches='tight')\n",
-    "    "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb b/notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb
new file mode 100644
index 000000000..abdbaf26b
--- /dev/null
+++ b/notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb
@@ -0,0 +1,652 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Statistical analysis of calibration factors#\n",
+    "\n",
+    "Author: Mikhail Karnevskiy, Steffen Hauf, Version 0.2\n",
+    "\n",
+    "Calibration constants for LPD1M1 detector from the data base with injection time between start_date and end_date are considered.\n",
+    "\n",
+    "To be visualized, calibration constants are averaged per ASICs. Plots shows calibration constant over time for each constant and for each module. Summary plots overall modules are created.\n",
+    "\n",
+    "In additional gain-slopes flat-field and pulse-capacitor are combined to relative-gain constant and presented as well. Noise in electron units is derived using gain factors and presented.\n",
+    "\n",
+    "Values shown in plots are saved in h5 files.\n",
+    "\n",
+    "All presented values corresponds to high and medium gain stages."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "cluster_profile = \"noDB\"  # The ipcluster profile to use\n",
+    "start_date = \"2018-01-30\"  # Date to start investigation interval from\n",
+    "end_date = \"2018-12-12\"  # Date to end investigation interval at, can be \"now\"\n",
+    "constants = [\"Offset\", \"Noise\", \"SlopesFF\", \"SlopesCI\"] # constants to plot\n",
+    "modules = [1]  # Modules, range allowed\n",
+    "bias_voltages = [250, 500]  # Bias voltage\n",
+    "mem_cells = [1, 128, 256, 512]  # Number of used memory cells. Typically: 4,32,64,128,176.\n",
+    "photon_energy = 9.2  # Photon energy of the beam\n",
+    "out_folder = \"/gpfs/exfel/data/scratch/karnem/testLPD_16/\"  # Output folder, required\n",
+    "use_existing = \"\" # Input folder\n",
+    "cal_db_timeout = 180000 # timeout on caldb requests\",\n",
+    "detectorDB = \"LPD1M1\"  # detector entry in the DB to investigate\n",
+    "dclass = \"LPD\"  # Detector class\n",
+    "cal_db_interface = \"tcp://max-exfl016:8015#8025\" # the database interface to use"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "import os\n",
+    "import numpy as np\n",
+    "import matplotlib\n",
+    "\n",
+    "##matplotlib.use(\"agg\")\n",
+    "import matplotlib.pyplot as plt\n",
+    "% matplotlib inline\n",
+    "\n",
+    "import sys\n",
+    "import datetime\n",
+    "import dateutil.parser\n",
+    "import warnings\n",
+    "\n",
+    "warnings.filterwarnings('ignore')\n",
+    "\n",
+    "from iCalibrationDB import Constants, Conditions, Detectors\n",
+    "from cal_tools.tools import get_from_db\n",
+    "from cal_tools.ana_tools import *\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "# Prepare variables\n",
+    "interval = 1  # interval for evaluation in days\n",
+    "\n",
+    "if modules[0] == -1:\n",
+    "    modules = list(range(16))\n",
+    "\n",
+    "in_mod_names = []\n",
+    "for mod in modules:\n",
+    "    in_mod_names.append(\"Q{}M{}\".format(mod // 4 + 1, mod % 4 + 1))\n",
+    "\n",
+    "constantsDark = {\"SlopesFF\": 'BadPixelsFF',\n",
+    "                 'SlopesCI': 'BadPixelsCI',\n",
+    "                 'Noise': 'BadPixelsDark',\n",
+    "                 'Offset': 'BadPixelsDark'}\n",
+    "print('Bad pixels data: ', constantsDark)\n",
+    "\n",
+    "# Define parameters in order to perform loop over time stamps\n",
+    "start = datetime.datetime.now() if start_date.upper() == \"NOW\" else dateutil.parser.parse(\n",
+    "    start_date)\n",
+    "end = datetime.datetime.now() if end_date.upper() == \"NOW\" else dateutil.parser.parse(\n",
+    "    end_date)\n",
+    "step = datetime.timedelta(hours=interval)\n",
+    "dt = end\n",
+    "\n",
+    "# Create output folder\n",
+    "os.makedirs(out_folder, exist_ok=True)\n",
+    "\n",
+    "# Get getector conditions\n",
+    "det = getattr(Detectors, detectorDB)\n",
+    "dconstants = getattr(Constants, dclass)\n",
+    "\n",
+    "if \"#\" in cal_db_interface:\n",
+    "    prot, serv, ran = cal_db_interface.split(\":\")\n",
+    "    r1, r2 = ran.split(\"#\")\n",
+    "    cal_db_interface = \":\".join(\n",
+    "        [prot, serv, str(np.random.randint(int(r1), int(r2)))])\n",
+    "\n",
+    "print('CalDB Interface {}'.format(cal_db_interface))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "import copy\n",
+    "\n",
+    "def prepare_to_store(a, nMem):\n",
+    "    shape = list(a.shape[:2])+[nMem,2]\n",
+    "    b = np.full(shape, np.nan)\n",
+    "    b[:, :, :a.shape[2]] = a[:, :, :, :2]\n",
+    "    return b\n",
+    "\n",
+    "def get_rebined(a, rebin):\n",
+    "    return a.reshape(\n",
+    "                int(a.shape[0] / rebin[0]),\n",
+    "                rebin[0],\n",
+    "                int(a.shape[1] / rebin[1]),\n",
+    "                rebin[1],\n",
+    "                a.shape[2],\n",
+    "                a.shape[3])\n",
+    "    \n",
+    "\n",
+    "nMem = 512 # Number of mem Cells to store\n",
+    "spShape = (64,64) # Shape of superpixel\n",
+    "\n",
+    "ret_constants = {}\n",
+    "\n",
+    "if use_existing != '':\n",
+    "    mem_cells = []\n",
+    "\n",
+    "# Loop over max_memory cells\n",
+    "for the_mem_cells in mem_cells:\n",
+    "\n",
+    "    # Loop over bias voltages\n",
+    "    for bias_voltage in bias_voltages:\n",
+    "\n",
+    "        # Loop over constants\n",
+    "        for c, const in enumerate(constants):\n",
+    "\n",
+    "            if not const in ret_constants:\n",
+    "                ret_constants[const] = {}\n",
+    "\n",
+    "            # Loop over modules\n",
+    "            for module in modules:\n",
+    "\n",
+    "                dt = end\n",
+    "\n",
+    "                qm = \"Q{}M{}\".format(module // 4 + 1, module % 4 + 1)\n",
+    "                if not qm in ret_constants[const]:\n",
+    "                    ret_constants[const][qm] = []\n",
+    "\n",
+    "                # Loop over time stamps\n",
+    "                while dt > start:\n",
+    "                    creation_time = dt\n",
+    "\n",
+    "                    if (const in [\"Offset\", \"Noise\",\n",
+    "                                  \"SlopesCI\"] or \"DARK\" in const.upper()):\n",
+    "                        dcond = Conditions.Dark\n",
+    "                        mcond = getattr(dcond, dclass)(\n",
+    "                            memory_cells=the_mem_cells,\n",
+    "                            bias_voltage=bias_voltage)\n",
+    "                    else:\n",
+    "                        dcond = Conditions.Illuminated\n",
+    "                        mcond = getattr(dcond, dclass)(\n",
+    "                            memory_cells=the_mem_cells,\n",
+    "                            bias_voltage=bias_voltage,\n",
+    "                            photon_energy=photon_energy)\n",
+    "\n",
+    "                    print('Request: ', const, qm, the_mem_cells, bias_voltage,\n",
+    "                          creation_time)\n",
+    "                    cdata, ctime = get_from_db(getattr(det, qm),\n",
+    "                                               getattr(dconstants, const)(),\n",
+    "                                               copy.deepcopy(mcond),\n",
+    "                                               None,\n",
+    "                                               cal_db_interface,\n",
+    "                                               creation_time=creation_time,\n",
+    "                                               verbosity=0,\n",
+    "                                               timeout=cal_db_timeout,\n",
+    "                                             meta_only=True )\n",
+    "            \n",
+    "                    if ctime is None or cdata is None:\n",
+    "                        print('Time or Data is None')\n",
+    "                        break\n",
+    "\n",
+    "                    ctime = ctime.calibration_constant_version.begin_at\n",
+    "\n",
+    "                    print(\"Found constant {}: begin at {}\".format(const,\n",
+    "                                                                  cdata is not None),\n",
+    "                          ctime)\n",
+    "                    print(cdata.shape)\n",
+    "\n",
+    "                    if const in ['SlopesFF']:\n",
+    "                        cdata = cdata[...,None,None]\n",
+    "                        \n",
+    "                    if(len(cdata.shape)==5):\n",
+    "                        cdata = cdata[:,:,:,:,0]\n",
+    "\n",
+    "                    if len(cdata.shape) < 4:\n",
+    "                        print(cdata.shape, \"Unexpected shape !!!!!!!!!\")\n",
+    "\n",
+    "                    if cdata.shape[0] != 256:\n",
+    "                        cdata = cdata.swapaxes(0, 2).swapaxes(1,3).swapaxes(2,3) \n",
+    "\n",
+    "                    print(cdata.shape)\n",
+    "\n",
+    "                    # Request bad pixel mask\n",
+    "                    if const in constantsDark:\n",
+    "                        #for par in mcond.parameters:\n",
+    "                        #    print (par.name, par.value)\n",
+    "                        print('RequestBP ',\n",
+    "                              (creation_time + step + step + step + step))\n",
+    "                        cdataBP, ctimeBP = get_from_db(getattr(det, qm),\n",
+    "                                                       getattr(dconstants,\n",
+    "                                                               constantsDark[const])(),\n",
+    "                                                       copy.deepcopy(mcond),\n",
+    "                                                       None,\n",
+    "                                                       cal_db_interface,\n",
+    "                                                       creation_time=(\n",
+    "                                                                   creation_time + step + step + step + step),\n",
+    "                                                       verbosity=0,\n",
+    "                                                       timeout=cal_db_timeout,\n",
+    "                                                       meta_only=True)\n",
+    "                        ctimeBP = ctimeBP.calibration_constant_version.begin_at\n",
+    "\n",
+    "                        if cdataBP is None:\n",
+    "                            print(\"Bad pixels are not found !!!!!!!!!\")\n",
+    "                            ctime = ctime.replace(tzinfo=None)\n",
+    "                            dt = ctime - step\n",
+    "                            continue\n",
+    "\n",
+    "                        print(\"Found BP {}\".format(ctimeBP))\n",
+    "                        print(cdataBP.shape)\n",
+    "\n",
+    "                        if const in ['SlopesFF']:\n",
+    "                            cdataBP = cdataBP[...,None,None]\n",
+    "                        \n",
+    "                        if(len(cdataBP.shape)==5):\n",
+    "                            cdataBP = cdataBP[:,:,:,:,0]\n",
+    "\n",
+    "                        if cdataBP.shape[0] != 256:\n",
+    "                            cdataBP = cdataBP.swapaxes(0, 2).swapaxes(1,3).swapaxes(2,3) \n",
+    "\n",
+    "                        if (len(cdataBP.shape) < 4):\n",
+    "                            print(cdataBP.shape, \"Unexpected shape !!!!!!!!!\")\n",
+    "\n",
+    "                        if cdataBP.shape != cdata.shape:\n",
+    "                            print(cdataBP.shape, 'Wrong BP shape!!!')\n",
+    "                            ctime = ctime.replace(tzinfo=None)\n",
+    "                            dt = ctime - step\n",
+    "                            continue\n",
+    "\n",
+    "                        # Apply bad pixel mask\n",
+    "                        cdataABP = np.copy(cdata)\n",
+    "                        cdataABP[cdataBP > 0] = np.nan\n",
+    "\n",
+    "                        # Create superpixels for constants with BP applied\n",
+    "                        cdataABP = get_rebined(cdataABP, spShape)\n",
+    "                        toStoreBP = prepare_to_store(np.nanmean(cdataABP, axis=(1, 3)), nMem)\n",
+    "                        toStoreBPStd = prepare_to_store(np.nanstd(cdataABP, axis=(1, 3)), nMem)\n",
+    "                        \n",
+    "                        # Prepare number of bad pixels per superpixels\n",
+    "                        cdataBP = get_rebined(cdataBP, spShape)\n",
+    "                        cdataNBP = prepare_to_store(np.nansum(cdataBP > 0, axis=(1, 3)), nMem)\n",
+    "                    else:\n",
+    "                        toStoreExtBP = 0\n",
+    "                        cdataBPExt = 0\n",
+    "\n",
+    "                    # Create superpixels for constants without BP applied\n",
+    "                    cdata = get_rebined(cdata, spShape)\n",
+    "                    toStoreStd = prepare_to_store(np.nanstd(cdata, axis=(1, 3)), nMem)\n",
+    "                    toStore = prepare_to_store(np.nanmean(cdata, axis=(1, 3)), nMem)\n",
+    "\n",
+    "                    # Convert parameters to dict\n",
+    "                    dpar = {}\n",
+    "                    for par in mcond.parameters:\n",
+    "                        dpar[par.name] = par.value\n",
+    "\n",
+    "                    print(\"Store values in dict\", const, qm, ctime)\n",
+    "                    ret_constants[const][qm].append({'ctime': ctime,\n",
+    "                                                     'nBP': cdataNBP,\n",
+    "                                                     'dataBP': toStoreBP,\n",
+    "                                                     'dataBPStd': toStoreBPStd,\n",
+    "                                                     'data': toStore,\n",
+    "                                                     'dataStd': toStoreStd,\n",
+    "                                                     'mdata': dpar})\n",
+    "                    \n",
+    "                    ctime = ctime.replace(tzinfo=None)\n",
+    "                    dt = ctime - step\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "if use_existing == \"\":\n",
+    "    print('Save data to /CalDBAna_{}_{}.h5'.format(dclass, modules[0]))\n",
+    "    save_dict_to_hdf5(ret_constants,\n",
+    "                      '{}/CalDBAna_{}_{}.h5'.format(out_folder, dclass, modules[0]))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "if use_existing == \"\":\n",
+    "    fpath = '{}/CalDBAna_{}_*.h5'.format(out_folder, dclass)\n",
+    "else:\n",
+    "    fpath = '{}/CalDBAna_{}_*.h5'.format(use_existing, dclass)\n",
+    "\n",
+    "print('Load data from {}'.format(fpath))\n",
+    "ret_constants = load_data_from_hdf5(fpath)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "print ('Combine Gain FF and CI and Noise in [e-]')\n",
+    "ret_constants[\"Gain\"] = {}\n",
+    "ret_constants[\"Noise-e\"] = {}\n",
+    "\n",
+    "for module in list(range(16)):\n",
+    "    if (\"SlopesFF\" not in ret_constants or\n",
+    "            \"SlopesPC\" not in ret_constants):\n",
+    "        break\n",
+    "\n",
+    "    qm = \"Q{}M{}\".format(module // 4 + 1, module % 4 + 1)\n",
+    "    print(qm)\n",
+    "\n",
+    "    if (qm not in ret_constants[\"SlopesFF\"] or\n",
+    "            qm not in ret_constants[\"SlopesCI\"]):\n",
+    "        continue\n",
+    "\n",
+    "    ret_constants[\"Gain\"][qm] = {}\n",
+    "\n",
+    "    dataFF = ret_constants[\"SlopesFF\"][qm]\n",
+    "    dataPC = ret_constants[\"SlopesCI\"][qm]\n",
+    "\n",
+    "    if (len(dataFF) == 0 or len(dataPC) == 0):\n",
+    "        continue\n",
+    "\n",
+    "    ctimesFF = np.array(dataFF[\"ctime\"])\n",
+    "    ctimesPC = np.array(dataPC[\"ctime\"])\n",
+    "\n",
+    "    ctime, icomb = combine_constants(ctimesFF, ctimesPC)\n",
+    "\n",
+    "    cdataPC_vs_time = np.array(dataPC[\"data\"])[..., 0]\n",
+    "    cdataFF_vs_time = np.array(dataFF[\"data\"])[..., 0]\n",
+    "\n",
+    "    cdataFF_vs_time = np.nanmedian(cdataFF_vs_time, axis=3)[..., None]\n",
+    "\n",
+    "    cdataFF_vs_time /= np.nanmedian(cdataFF_vs_time, axis=(1, 2, 3))[:, None,\n",
+    "                       None, None]\n",
+    "    cdataPC_vs_time /= np.nanmedian(cdataPC_vs_time, axis=(1, 2, 3))[:, None,\n",
+    "                       None, None]\n",
+    "\n",
+    "    gain_vs_time = []\n",
+    "    for iFF, iPC in icomb:\n",
+    "        gain_vs_time.append(cdataFF_vs_time[iFF] * cdataPC_vs_time[iPC])\n",
+    "\n",
+    "    print(np.array(gain_vs_time).shape)\n",
+    "    \n",
+    "    ctime_ts = [t.timestamp() for t in ctime]\n",
+    "    \n",
+    "    ret_constants[\"Gain\"][qm][\"ctime\"] = ctime\n",
+    "    ret_constants[\"Gain\"][qm][\"data\"] = np.array(gain_vs_time)\n",
+    "    ret_constants[\"Gain\"][qm][\"dataBP\"] = np.array(gain_vs_time)\n",
+    "    ret_constants[\"Gain\"][qm][\"nBP\"] = np.array(gain_vs_time)\n",
+    "\n",
+    "    if \"Noise\" not in ret_constants:\n",
+    "        continue\n",
+    "\n",
+    "    if qm not in ret_constants[\"Noise\"]:\n",
+    "        continue\n",
+    "\n",
+    "    dataN = ret_constants[\"Noise\"][qm]\n",
+    "    if len(dataN) == 0:\n",
+    "        continue\n",
+    "\n",
+    "    ret_constants[\"Noise-e\"][qm] = {}\n",
+    "            \n",
+    "    ctimesG = np.array(ctime)\n",
+    "    ctimesN = np.array(dataN[\"ctime\"])\n",
+    "\n",
+    "    ctime, icomb = combine_constants(ctimesG, ctimesN)\n",
+    "\n",
+    "    cdataG_vs_time = np.array(gain_vs_time)\n",
+    "    cdataN_vs_time = np.array(dataN[\"data\"])[..., 0]\n",
+    "\n",
+    "    data_vs_time = []\n",
+    "    for iG, iN in icomb:\n",
+    "        data_vs_time.append(\n",
+    "            cdataN_vs_time[iN] * (8000 / 3.6 / 67.) / cdataG_vs_time[iG])\n",
+    "\n",
+    "    print(np.array(gain_vs_time).shape)\n",
+    "    ctime_ts = [t.timestamp() for t in ctime]\n",
+    "    ret_constants[\"Noise-e\"][qm][\"ctime\"] = ctime\n",
+    "    ret_constants[\"Noise-e\"][qm][\"data\"] = np.array(data_vs_time)\n",
+    "    ret_constants[\"Noise-e\"][qm][\"dataBP\"] = np.array(data_vs_time)\n",
+    "    ret_constants[\"Noise-e\"][qm][\"nBP\"] = np.array(data_vs_time)\n",
+    "    \n",
+    "save_dict_to_hdf5({k:v for k,v in ret_constants.items() if k in ['Gain', 'Noise-e']},\n",
+    "                  '{}/CalDBAna_{}_Gain.h5'.format(out_folder, dclass))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "# Parameters for plotting\n",
+    "\n",
+    "# Define range for plotting\n",
+    "rangevals = {\n",
+    "    \"Offset\": [[800., 1500], [600, 900]],\n",
+    "    \"Noise\": [[2.0, 16], [1.0, 7.0]],\n",
+    "    \"Gain\": [[20, 30], [20, 30]],\n",
+    "    \"Noise-e\": [[100., 600.], [100., 600.]],\n",
+    "    \"SlopesCI\": [[0.95, 1.05], [0.0, 0.5]],\n",
+    "    \"SlopesFF\": [[0.8, 1.2], [0.8, 1.2]]\n",
+    "}\n",
+    "\n",
+    "nMemToShow = 32\n",
+    "\n",
+    "keys = {\n",
+    "    'Mean': ['data', '', 'Mean over pixels'],\n",
+    "    'std': ['dataStd', '', '$\\sigma$ over pixels'],\n",
+    "    'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n",
+    "    'NBP': ['nBP', 'Fraction of BP', 'Fraction of BP'],\n",
+    "    'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n",
+    "    'stdASIC': ['', '', '$\\sigma$ over ASICs'],\n",
+    "    'stdCell': ['', '', '$\\sigma$ over Cells'],\n",
+    "}\n",
+    "\n",
+    "gain_name = ['High', 'Medium', 'Low']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "print('Plot calibration constants')\n",
+    "\n",
+    "# loop over constat type\n",
+    "for const, modules in ret_constants.items():\n",
+    "\n",
+    "    # Loop over gain\n",
+    "    for gain in range(2):\n",
+    "        print('Const: {}, gain {}'.format(const, gain))\n",
+    "\n",
+    "        if const in [\"Gain\", \"Noise-e\"] and gain == 1:\n",
+    "            continue\n",
+    "        else:\n",
+    "            pass\n",
+    "\n",
+    "        # loop over modules\n",
+    "        mod_data = {}\n",
+    "        mod_data['stdASIC'] = []\n",
+    "        mod_data['stdCell'] = []\n",
+    "        mod_names = []\n",
+    "        mod_times = []\n",
+    "\n",
+    "        # Loop over modules\n",
+    "        for mod, data in modules.items():\n",
+    "            \n",
+    "            if mod not in in_mod_names:\n",
+    "                continue\n",
+    "\n",
+    "            print(mod)\n",
+    "\n",
+    "            ctimes = np.array(data[\"ctime\"])\n",
+    "            ctimes_ticks = [x.strftime('%m-%d') for x in ctimes]\n",
+    "\n",
+    "            if (\"mdata\" in data):\n",
+    "                cmdata = np.array(data[\"mdata\"])\n",
+    "                for i, tick in enumerate(ctimes_ticks):\n",
+    "                    ctimes_ticks[i] = ctimes_ticks[i] + \\\n",
+    "                        ', V={:1.0f}'.format(cmdata[i]['Sensor Bias Voltage']) + \\\n",
+    "                        ', M={:1.0f}'.format(\n",
+    "                        cmdata[i]['Memory cells'])\n",
+    "\n",
+    "            sort_ind = np.argsort(ctimes_ticks)\n",
+    "            ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n",
+    "\n",
+    "            # Create sorted by data dataset\n",
+    "            rdata = {}\n",
+    "            for key, item in keys.items():\n",
+    "                if item[0] in data:\n",
+    "                    rdata[key] = np.array(data[item[0]])[sort_ind]\n",
+    "\n",
+    "            # print(rdata['Mean'].shape)\n",
+    "            nTimes = rdata['Mean'].shape[0]\n",
+    "            nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n",
+    "            nBins = nMemToShow * nPixels\n",
+    "\n",
+    "            # Select gain\n",
+    "            if const not in [\"Gain\", \"Noise-e\"]:\n",
+    "                for key in rdata:\n",
+    "                    rdata[key] = rdata[key][..., gain]\n",
+    "\n",
+    "            # Avoid to low values\n",
+    "            if const in [\"Noise\", \"Offset\", \"Noise-e\"]:\n",
+    "                rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n",
+    "                if 'MeanBP' in rdata:\n",
+    "                    rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n",
+    "\n",
+    "            if 'NBP' in rdata:\n",
+    "                rdata[\"NBP\"][rdata[\"NBP\"] == 4096] = np.nan\n",
+    "                rdata[\"NBP\"] = rdata[\"NBP\"] / (64 * 64) * 100\n",
+    "\n",
+    "            # Reshape: ASICs over cells for plotting\n",
+    "            pdata = {}\n",
+    "            for key in rdata:\n",
+    "                pdata[key] = rdata[key][:, :, :, :nMemToShow].reshape(\n",
+    "                    nTimes, nBins).swapaxes(0, 1)\n",
+    "\n",
+    "            # Summary over ASICs\n",
+    "            adata = {}\n",
+    "            for key in rdata:\n",
+    "                adata[key] = np.nanmean(rdata[key], axis=(1, 2)).swapaxes(0, 1)\n",
+    "\n",
+    "            # Summary information over modules\n",
+    "            for key in pdata:\n",
+    "                if key not in mod_data:\n",
+    "                    mod_data[key] = []\n",
+    "                mod_data[key].append(np.nanmean(pdata[key], axis=0))\n",
+    "\n",
+    "            mod_data['stdASIC'].append(np.nanstd(\n",
+    "                np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=(1, 2)), axis=1))\n",
+    "            mod_data['stdCell'].append(np.nanstd(\n",
+    "                np.nanmean(rdata['Mean'][:, :, :, :nMemToShow], axis=3), axis=(1, 2)))\n",
+    "\n",
+    "            mod_names.append(mod)\n",
+    "            mod_times.append(ctimes_ticks)\n",
+    "\n",
+    "            # Plotting\n",
+    "            for key in pdata:\n",
+    "                vmin = None\n",
+    "                vmax = None\n",
+    "                if const in rangevals and key in ['Mean', 'MeanBP']:\n",
+    "                    vmin = rangevals[const][gain][0]\n",
+    "                    vmax = rangevals[const][gain][1]\n",
+    "\n",
+    "                if key == 'NBP':\n",
+    "                    unit = '[%]'\n",
+    "                else:\n",
+    "                    unit = '[ADU]'\n",
+    "                    if const == 'Noise-e':\n",
+    "                        unit = '[$e^-$]'\n",
+    "\n",
+    "                title = '{}, module {}, {} gain, {}'.format(\n",
+    "                    const, mod, gain_name[gain], keys[key][1])\n",
+    "                cb_label = '{}, {} {}'.format(const, keys[key][2], unit)\n",
+    "\n",
+    "                HMCombine(pdata[key][::-1],\n",
+    "                          x_label='Creation Time', y_label='ASIC ID',\n",
+    "                          x_ticklabels=ctimes_ticks,\n",
+    "                          x_ticks=np.arange(len(ctimes_ticks))+0.3,\n",
+    "                          title=title, cb_label=cb_label,\n",
+    "                          vmin=vmin, vmax=vmax,\n",
+    "                          fname='{}/{}_{}_g{}_ASIC_{}.png'.format(\n",
+    "                                  out_folder, const, mod, gain, key),\n",
+    "                          y_ticks=np.arange(nBins, step=nMemToShow)+16,\n",
+    "                          y_ticklabels=np.arange(nPixels)[::-1]+1,\n",
+    "                          pad=[0.125, 0.125, 0.12, 0.185])\n",
+    "\n",
+    "                HMCombine(adata[key], type=0,\n",
+    "                          x_label='Creation Time', y_label='Memory cell ID',\n",
+    "                          x_ticklabels=ctimes_ticks,\n",
+    "                          x_ticks=np.arange(len(ctimes_ticks))+0.3,\n",
+    "                          title=title, cb_label=cb_label,\n",
+    "                          fname='{}/{}_{}_g{}_MEM_{}.png'.format(\n",
+    "                                  out_folder, const, mod, gain, key),\n",
+    "                          vmin=vmin, vmax=vmax)\n",
+    "\n",
+    "                #break\n",
+    "            #break\n",
+    "        #break\n",
+    "    #break"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.4.3"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
-- 
GitLab