diff --git a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb index 5b4a4640028a4bada1d6729196e24d3b47959121..14358ef6fd28396300539ce3e8a2d4a26a82bc28 100644 --- a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb @@ -33,7 +33,6 @@ "ctrl_source_template = '{}/DET/CONTROL' # template for control source name (filled with karabo_id_control)\n", "\n", "# Parameters for calibration database and storing constants.\n", - "use_dir_creation_date = True # use dir creation date\n", "cal_db_interface = 'tcp://max-exfl-cal001:8016#8045' # calibrate db interface to connect to\n", "cal_db_timeout = 300000 # timeout on caldb requests\n", "local_output = True # output constants locally\n", @@ -47,6 +46,7 @@ "min_trains = 100 # Minimum number of trains to process dark constants. Raise a warning if the run has fewer trains.\n", "manual_slow_data = False # if true, use manually entered bias_voltage and integration_time values\n", "time_limits = 0.025 # to find calibration constants later on, the integration time is allowed to vary by 0.5 us\n", + "creation_time = \"\" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. \"2022-06-28 13:00:00\"\n", "\n", "# Parameters to be used for injecting dark calibration constants.\n", "integration_time = -1 # Integration time in us. Set to -1 to overwrite by value in file.\n", @@ -73,12 +73,12 @@ "source": [ "import os\n", "import warnings\n", + "from datetime import timedelta\n", "from logging import warning\n", "warnings.filterwarnings('ignore')\n", "\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", - "import multiprocessing\n", "import numpy as np\n", "import pasha as psh\n", "import yaml\n", @@ -91,10 +91,14 @@ "from XFELDetAna.plotting.heatmap import heatmapPlot\n", "from XFELDetAna.plotting.histogram import histPlot\n", "from cal_tools import step_timing\n", + "from cal_tools.calcat_interface2 import (\n", + " CalibrationData,\n", + " JUNGFRAUConditions,\n", + ")\n", "from cal_tools.jungfrau import jungfraulib\n", "from cal_tools.enums import BadPixels, JungfrauGainMode\n", "from cal_tools.tools import (\n", - " get_dir_creation_date,\n", + " calcat_creation_time,\n", " get_pdu_from_db,\n", " get_random_db_interface,\n", " get_report,\n", @@ -121,10 +125,8 @@ " JungfrauGainMode.FORCE_SWITCH_HG1.value, JungfrauGainMode.FORCE_SWITCH_HG2.value]\n", "old_fixed_settings = [\"fixgain1\", \"fixgain2\"]\n", "\n", - "creation_time = None\n", - "if use_dir_creation_date:\n", - " creation_time = get_dir_creation_date(in_folder, run_high)\n", - " print(f\"Using {creation_time} as creation time\")\n", + "creation_time = calcat_creation_time(in_folder, run_high, creation_time)\n", + "print(f\"Using {creation_time} as creation time\")\n", "os.makedirs(out_folder, exist_ok=True)\n", "\n", "cal_db_interface = get_random_db_interface(cal_db_interface)\n", @@ -250,58 +252,6 @@ "step_timer.done_step('Set conditions and get PDU names from CalCat.')" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Start retrieving existing constants for comparison\n", - "step_timer.start()\n", - "mod_x_const = [(mod, const) for const in [\"Offset\", \"Noise\", \"BadPixelsDark\"] for mod in karabo_da]\n", - "\n", - "from cal_tools.tools import get_from_db\n", - "from datetime import timedelta\n", - "\n", - "def retrieve_old_constant(mod, const):\n", - " dconst = getattr(Constants.jungfrau, const)()\n", - "\n", - " data, mdata = get_from_db(\n", - " karabo_id=karabo_id,\n", - " karabo_da=mod,\n", - " constant=dconst,\n", - " condition=condition,\n", - " empty_constant=None,\n", - " cal_db_interface=cal_db_interface,\n", - " creation_time=creation_time-timedelta(seconds=60) if creation_time else None,\n", - " strategy=\"pdu_prior_in_time\",\n", - " verbosity=1,\n", - " timeout=cal_db_timeout\n", - " )\n", - "\n", - " if mdata is None or data is None:\n", - " timestamp = \"Not found\"\n", - " filepath = None\n", - " h5path = None\n", - " else:\n", - " timestamp = mdata.calibration_constant_version.begin_at.isoformat()\n", - " filepath = os.path.join(\n", - " mdata.calibration_constant_version.hdf5path,\n", - " mdata.calibration_constant_version.filename\n", - " )\n", - " h5path = mdata.calibration_constant_version.h5path\n", - "\n", - " return data, timestamp, filepath, h5path\n", - "\n", - "\n", - "old_retrieval_pool = multiprocessing.Pool()\n", - "old_retrieval_res = old_retrieval_pool.starmap_async(\n", - " retrieve_old_constant, mod_x_const\n", - ")\n", - "old_retrieval_pool.close()\n", - "step_timer.done_step('Retrieved old dark constants for comparison.')" - ] - }, { "cell_type": "code", "execution_count": null, @@ -707,19 +657,55 @@ "metadata": {}, "outputs": [], "source": [ - "# now we need the old constants\n", + "# Start retrieving existing constants for comparison\n", + "step_timer.start()\n", + "\n", "old_const = {}\n", "old_mdata = {}\n", - "old_retrieval_res.wait()\n", - "\n", - "for (mod, const), (data, timestamp, filepath, h5path) in zip(\n", - " mod_x_const, old_retrieval_res.get()):\n", - " old_const.setdefault(mod, {})[const] = data\n", - " old_mdata.setdefault(mod, {})[const] = {\n", - " \"timestamp\": timestamp,\n", - " \"filepath\": filepath,\n", - " \"h5path\": h5path,\n", - " }" + "\n", + "# set the operating condition\n", + "conditions = JUNGFRAUConditions(\n", + " sensor_bias_voltage=bias_voltage,\n", + " memory_cells=memory_cells,\n", + " integration_time=integration_time,\n", + " gain_setting=gain_setting,\n", + " gain_mode=gain_mode,\n", + ")\n", + "\n", + "jf_caldata = CalibrationData.from_condition(\n", + " conditions,\n", + " karabo_id,\n", + " event_at=creation_time-timedelta(seconds=60),\n", + " begin_at_strategy=\"prior\",\n", + ")\n", + "\n", + "# TODO: remove when injection part is updated.\n", + "_cnames_mapping = {\n", + " \"Offset\": \"Offset10Hz\",\n", + " \"Noise\": \"Noise10Hz\",\n", + " \"BadPixelsDark\": \"BadPixelsDark10Hz\",\n", + "}\n", + "for mod in karabo_da:\n", + " old_const[mod] = {}\n", + " old_mdata[mod] = {}\n", + " for cname in constants.keys():\n", + " cmdata = jf_caldata.get(_cnames_mapping[cname], None)\n", + " data_found = cmdata and mod in cmdata.aggregator_names\n", + " if data_found:\n", + " old_const[mod][cname] = cmdata[mod].ndarray()\n", + " old_mdata[mod][cname] = {\n", + " \"timestamp\": cmdata[mod].metadata(\"begin_validity_at\"),\n", + " \"filepath\": str(cmdata[mod].file_path()),\n", + " \"dataset\": cmdata[mod].dataset,\n", + " }\n", + " else:\n", + " old_const[mod][cname] = None\n", + " old_mdata[mod][cname] = {\n", + " \"timestamp\": \"Not found\",\n", + " \"filepath\": None,\n", + " \"dataset\": None,\n", + " }\n", + "step_timer.done_step('Retrieved old dark constants for comparison.')" ] }, { diff --git a/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb index 08494dc42112fba9e6135c7291795ff1d4c4e048..607f15be1f61fca8639abe9eb1efdd6ae121c6b5 100644 --- a/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_darks_Summary_NBC.ipynb @@ -148,7 +148,7 @@ "\n", " if cname in old_mod_mdata: # a module can be missing from detector dark processing.\n", " filepath = old_mod_mdata[cname][\"filepath\"]\n", - " h5path = old_mod_mdata[cname][\"h5path\"]\n", + " h5path = old_mod_mdata[cname][\"dataset\"]\n", " if not filepath or not h5path:\n", " excluded_modules.append(mod)\n", " prev_constants[cname][i, ...].fill(np.nan)\n", diff --git a/src/cal_tools/calcat_interface2.py b/src/cal_tools/calcat_interface2.py index 0d87fd7f2a3fda716353e614d90d9e8b785b0aaa..a26af505e7520854a6c097ae6462c9f6f9940aea 100644 --- a/src/cal_tools/calcat_interface2.py +++ b/src/cal_tools/calcat_interface2.py @@ -258,13 +258,15 @@ class SingleConstant: _have_calcat_metadata=True, ) - def dataset_obj(self, caldb_root=None) -> h5py.Dataset: + def file_path(self, caldb_root=None) -> Path: if caldb_root is not None: caldb_root = Path(caldb_root) else: caldb_root = _get_default_caldb_root() + return caldb_root / self.path - f = h5py.File(caldb_root / self.path, "r") + def dataset_obj(self, caldb_root=None) -> h5py.Dataset: + f = h5py.File(self.file_path(caldb_root), "r") return f[self.dataset]["data"] def ndarray(self, caldb_root=None): @@ -495,7 +497,14 @@ class CalibrationData(Mapping): client=None, event_at=None, pdu_snapshot_at=None, + begin_at_strategy="closest", ): + accepted_strategies = ["closest", "prior"] + if begin_at_strategy not in accepted_strategies: + raise ValueError( + "Invalid begin_at_strategy. " + f"Expected one of {accepted_strategies}") + if calibrations is None: calibrations = set(condition.calibration_types) if pdu_snapshot_at is None: @@ -539,6 +548,7 @@ class CalibrationData(Mapping): "karabo_da": "", "event_at": client.format_time(event_at), "pdu_snapshot_at": client.format_time(pdu_snapshot_at), + "begin_at_strategy": begin_at_strategy, }, data=json.dumps(cls._format_cond(condition_dict)), ) @@ -927,6 +937,46 @@ class DSSCConditions(ConditionsBase): } +@dataclass +class JUNGFRAUConditions(ConditionsBase): + """Conditions for JUNGFRAU detectors""" + sensor_bias_voltage: float + memory_cells: int + integration_time: float + gain_setting: int + gain_mode: Optional[int] = None + sensor_temperature: float = 291 + pixels_x: int = 1024 + pixels_y: int = 512 + + _params = [ + "Sensor Bias Voltage", + "Memory Cells", + "Pixels X", + "Pixels Y", + "Integration Time", + "Sensor temperature", + "Gain Setting", + "Gain mode", + ] + calibration_types = { + "Offset10Hz": _params, + "Noise10Hz": _params, + "BadPixelsDark10Hz": _params, + "RelativeGain10Hz": _params, + "BadPixelsFF10Hz": _params, + } + + def make_dict(self, parameters): + cond = super().make_dict(parameters) + + # Fix-up some database quirks. + if int(cond.get("Gain mode", -1)) == 0: + del cond["Gain mode"] + + return cond + + @dataclass class ShimadzuHPVX2Conditions(ConditionsBase): burst_frame_count: float