diff --git a/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb b/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb index ed69341365b1eeac08fc673bd985430fb6859552..788cb6cf3aa09cbf661701dbd52a39bab93d2d4a 100644 --- a/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb +++ b/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb @@ -6,7 +6,7 @@ "source": [ "# pnCCD Dark Characterization\n", "\n", - "Author: DET Group, modified by Kiana Setoodehnia, Version: 4.0 (December 2020)\n", + "Author: DET Group, modified by Kiana Setoodehnia, Version: 5.0\n", "\n", "The following notebook provides dark image analysis of the pnCCD detector. Dark characterization evaluates offset and noise of the detector and gives information about bad pixels. \n", "\n", @@ -22,12 +22,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:54:38.999974Z", - "start_time": "2018-12-06T10:54:38.983406Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "in_folder = \"/gpfs/exfel/exp/SQS/202031/p900166/raw\" # input folder, required\n", @@ -79,12 +74,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:54:39.467334Z", - "start_time": "2018-12-06T10:54:39.427784Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "import datetime\n", @@ -144,12 +134,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:54:40.058101Z", - "start_time": "2018-12-06T10:54:40.042615Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "# Calibration Database Settings, and Some Initial Run Parameters & Paths:\n", @@ -238,12 +223,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:54:40.555804Z", - "start_time": "2018-12-06T10:54:40.452978Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "# Reading Parameters such as Detector Bias, Gain, etc. from the Data:\n", @@ -280,12 +260,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:55:21.238009Z", - "start_time": "2018-12-06T10:54:54.586435Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "step_timer.start()\n", @@ -327,12 +302,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:56:20.686534Z", - "start_time": "2018-12-06T10:56:11.721829Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "#************** HISTOGRAMS *******************#\n", @@ -901,15 +871,10 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T10:56:22.741284Z", - "start_time": "2018-12-06T10:56:20.688393Z" - } - }, + "metadata": {}, "outputs": [], "source": [ - "step_time.start()\n", + "step_timer.start()\n", "constant_maps = {\n", " 'Offset': offsetMap[..., np.newaxis],\n", " 'Noise': noiseMapCM_2nd[..., np.newaxis],\n", diff --git a/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb b/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb index 5b715e5972993cc2b8cca21bdafcefe4ad930ed8..06f1b26657ee53bab62a8be2c6ed7c2c0f279372 100644 --- a/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb +++ b/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb @@ -6,7 +6,7 @@ "source": [ "# pnCCD Data Correction #\n", "\n", - "Authors: DET Group, Modified by Kiana Setoodehnia on December 2020 - Version 4.0\n", + "Authors: DET Group, Modified by Kiana Setoodehnia - Version 5.0\n", "\n", "The following notebook provides offset, common mode, relative gain, split events and pattern classification corrections of images acquired with the pnCCD. This notebook *does not* yet correct for charge transfer inefficiency." ] @@ -14,46 +14,41 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T15:54:23.218849Z", - "start_time": "2018-12-06T15:54:23.166497Z" - } - }, + "metadata": {}, "outputs": [], "source": [ - "in_folder = \"/gpfs/exfel/exp/SQS/202031/p900166/raw\" # input folder\n", - "out_folder = '/gpfs/exfel/data/scratch/ahmedk/test/remove' # output folder\n", - "run = 347 # which run to read data from\n", - "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n", + "in_folder = \"/gpfs/exfel/exp/SQS/202031/p900166/raw\" # input folder\n", + "out_folder = '' # output folder\n", + "run = 347 # which run to read data from\n", + "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n", + "sequences_per_node = 1 # number of sequences running on the same slurm node.\n", "\n", - "db_module = \"pnCCD_M205_M206\"\n", "karabo_da = 'PNCCD01' # data aggregators\n", "karabo_da_control = \"PNCCD02\" # file inset for control data\n", "karabo_id = \"SQS_NQS_PNCCD1MP\" # karabo prefix of PNCCD devices\n", "receiver_id = \"PNCCD_FMT-0\" # inset for receiver devices\n", "path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data\n", "path_template_seqs = \"{}/r{:04d}/*PNCCD01-S*.h5\"\n", - "h5path = '{}/CAL/{}:output' # path to data in the HDF5 file \n", - "h5path_ctrl = '{}/CTRL/TCTRL'\n", + "instrument_source_template = '{}/CAL/{}:output' # path to data in the HDF5 file \n", + "control_source_template = '{}/CTRL/TCTRL' # control source template\n", + "mdl_source_template = \"{}/MDL/{}\" # middlelayer source template\n", "\n", - "overwrite = True # keep this as True to not overwrite the output \n", - "use_dir_creation_date = True # To obtain creation time of the run\n", - "number_dark_frames = 0 # number of images to be used, if set to 0 all available images are used\n", - "chunk_size_idim = 1 # H5 chunking size of output data\n", + "overwrite = True # keep this as True to not overwrite the output \n", "\n", - "cpuCores = 40\n", + "# Parameters affecting data correction.\n", "commonModeBlockSize = [512, 512] # size of the detector in pixels for common mode calculations\n", "commonModeAxis = 0 # axis along which common mode will be calculated, 0 = row, and 1 = column \n", "split_evt_primary_threshold = 4. # primary threshold for split event classification in terms of n sigma noise\n", "split_evt_secondary_threshold = 3. # secondary threshold for split event classification in terms of n sigma noise\n", - "sequences_per_node = 1\n", - "limit_images = 0\n", + "saturated_threshold = 32000. # full well capacity in ADU\n", + "chunk_size_idim = 1 # H5 chunking size of output data\n", + "# ONLY FOR TESTING\n", + "limit_images = 0 # this parameter is used for limiting number of images to correct from a sequence file. ONLY FOR TESTING.\n", "\n", - "# pnCCD parameters:\n", + "# Conditions for retrieving calibration constants\n", "fix_temperature_top = 0. # fix temperature for top sensor in K, set to 0. to use value from slow data.\n", "fix_temperature_bot = 0. # fix temperature for bottom senspr in K, set to 0. to use value from slow data.\n", - "gain = 0.1 # the detector's gain setting, It is later read from file and this value is overwritten\n", + "gain = -1 # the detector's gain setting, It is later read from file and this value is overwritten\n", "bias_voltage = 0. # the detector's bias voltage. set to 0. to use value from slow data.\n", "integration_time = 70 # detector's integration time\n", "photon_energy = 1.6 # Al fluorescence in keV\n", @@ -61,14 +56,16 @@ "cal_db_interface = \"tcp://max-exfl016:8015\" # calibration DB interface to use\n", "cal_db_timeout = 300000 # timeout on caldb requests\n", "creation_time = \"\" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.ms e.g. 2019-07-04 11:02:41.00\n", + "use_dir_creation_date = True # To obtain creation time of the run\n", "\n", + "# Booleans for selecting corrections to apply.\n", "only_offset = False # Only, apply offset.\n", "common_mode = True # Apply common mode correction\n", "relgain = True # Apply relative gain correction\n", - "cti = False # Apply charge transfer inefficiency correction (not implemented, yet)\n", - "pattern_classification = True # classify split events\n", + "pattern_classification = True # classify split events\n", "\n", - "saturated_threshold = 32000. # full well capacity in ADU\n", + "# TODO: REMOVE\n", + "db_module = \"\"\n", "\n", "\n", "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):\n", @@ -98,37 +95,32 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T15:54:23.455376Z", - "start_time": "2018-12-06T15:54:23.413579Z" - } - }, + "metadata": {}, "outputs": [], "source": [ - "import copy\n", "import datetime\n", - "import glob\n", "import os\n", - "import time\n", - "import traceback\n", "import warnings\n", - "import traceback\n", - "from datetime import timedelta\n", + "from pathlib import Path\n", "from typing import Tuple\n", "warnings.filterwarnings('ignore')\n", "\n", "import h5py\n", "import matplotlib.pyplot as plt\n", + "import numpy as np\n", "import pasha as psh\n", - "from extra_data import H5File, RunDirectory\n", - "from iminuit import Minuit\n", "from IPython.display import Markdown, display\n", + "from extra_data import H5File, RunDirectory\n", + "from prettytable import PrettyTable\n", "\n", "%matplotlib inline\n", - "import numpy as np\n", + "prettyPlotting=True\n", + "\n", "import XFELDetAna.xfelprofiler as xprof\n", - "from cal_tools.pnccdlib import VALID_GAINS, extract_slow_data\n", + "from XFELDetAna import xfelpyanatools as xana\n", + "from XFELDetAna import xfelpycaltools as xcal\n", + "from XFELDetAna.plotting.util import prettyPlotting\n", + "from cal_tools import pnccdlib\n", "from cal_tools.tools import (\n", " get_constant_from_db_and_time,\n", " get_dir_creation_date,\n", @@ -139,16 +131,9 @@ "from cal_tools import h5_copy_except\n", "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", "from iCalibrationDB.detectors import DetectorTypes\n", - "from prettytable import PrettyTable\n", "\n", "profiler = xprof.Profiler()\n", - "profiler.disable()\n", - "\n", - "from XFELDetAna import xfelpyanatools as xana\n", - "from XFELDetAna import xfelpycaltools as xcal\n", - "from XFELDetAna.plotting.util import prettyPlotting\n", - "\n", - "prettyPlotting=True" + "profiler.disable()" ] }, { @@ -173,9 +158,8 @@ "print(file_loc)\n", "\n", "# Paths to the data:\n", - "ped_dir = \"{}/r{:04d}\".format(in_folder, run)\n", - "h5path = h5path.format(karabo_id, receiver_id)\n", - "print(\"HDF5 path to data: {}\\n\".format(h5path))\n", + "instrument_src = instrument_source_template.format(karabo_id, receiver_id)\n", + "print(f\"Instrument H5File source: {instrument_src}\\n\")\n", "\n", "# Run's creation time:\n", "if creation_time:\n", @@ -212,6 +196,7 @@ ")\n", "file_list = []\n", "print(f\"Processing a total of {total_sequences} sequence files:\")\n", + "# TODO: use extra data and sort it.\n", "for f in mapped_files[karabo_da].queue:\n", " file_list.append(f)\n", " print(f)" @@ -223,25 +208,27 @@ "metadata": {}, "outputs": [], "source": [ - "# extract slow data\n", + "# extract control data\n", "if karabo_da_control:\n", - " mdl_path = f\"{karabo_id}/MDL/{'{}'}\"\n", - " ctrl_path = h5path_ctrl.format(karabo_id)\n", - " ctrl_dc = RunDirectory(ped_dir).select(\n", + " mdl_src = mdl_source_template.format(karabo_id, \"{}\")\n", + " ctrl_src = control_source_template.format(karabo_id)\n", + " #TODO sequences and select files\n", + " ctrl_dc = RunDirectory(Path(in_folder) / f\"r{run:04d}\").select(\n", " [\n", - " [ctrl_path, \"*\"],\n", - " [mdl_path.format(\"*\"), \"*\"],]\n", + " [ctrl_src, \"*\"],\n", + " [mdl_src.format(\"*\"), \"*\"],]\n", " )\n", + " ctrl_data = pnccdlib.PnccdCtrl(ctrl_dc, ctrl_src, mdl_src)\n", + "\n", + " if bias_voltage == 0.:\n", + " bias_voltage = ctrl_data.get_bias_voltage()\n", + " if gain == -1:\n", + " gain = ctrl_data.get_gain()\n", + " if fix_temperature_top == 0:\n", + " fix_temperature_top = ctrl_data.get_fix_temperature_top()\n", + " if fix_temperature_bot == 0:\n", + " fix_temperature_bot = ctrl_data.get_fix_temperature_bot()\n", "\n", - " bias_voltage, gain, fix_temperature_top, fix_temperature_bot = extract_slow_data( # noqa\n", - " ctrl_dc,\n", - " ctrl_path,\n", - " mdl_path,\n", - " bias_voltage,\n", - " gain,\n", - " fix_temperature_top,\n", - " fix_temperature_bot,\n", - " )\n", "# Printing the Parameters Read from the Data File:\n", "display(Markdown('### Detector Parameters'))\n", "print(f\"Bias voltage is {bias_voltage:0.1f} V.\")\n", @@ -257,7 +244,7 @@ "metadata": {}, "outputs": [], "source": [ - "gain_k = [k for k, v in VALID_GAINS.items() if v == gain][0]\n", + "gain_k = [k for k, v in pnccdlib.VALID_GAINS.items() if v == gain][0]\n", "if gain_k == 'a':\n", " split_evt_mip_threshold = 1000. # MIP threshold in ADU for event classification (10 times average noise)\n", "\n", @@ -336,36 +323,27 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T15:54:23.913269Z", - "start_time": "2018-12-06T15:54:23.868910Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "# Sensor size and block size definitions (important for common mode and other corrections):\n", - "\n", - "sensorSize = [pixels_x, pixels_y]\n", "run_parallel = False\n", + "memoryCells = 1 # pnCCD has 1 memory cell\n", + "sensorSize = [pixels_x, pixels_y]\n", "blockSize = [sensorSize[0]//2, sensorSize[1]//2] # sensor area will be analysed according to blockSize\n", - "xcal.defaultBlockSize = blockSize # for xcal.HistogramCalculators \n", - "memoryCells = 1 # pnCCD has 1 memory cell" + "xcal.defaultBlockSize = blockSize # for xcal.HistogramCalculators " ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T15:54:23.913269Z", - "start_time": "2018-12-06T15:54:23.868910Z" - } - }, + "metadata": {}, "outputs": [], "source": [ + "step_timer = StepTimer()\n", + "\n", "# Output Folder Creation:\n", - "os.makedirs(out_folder, exist_ok=True)" + "os.makedirs(out_folder, exist_ok=True if overwrite else False)" ] }, { @@ -428,12 +406,10 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "## Constants retrieval" + "## Retrieving calibration constants" ] }, { @@ -442,8 +418,8 @@ "metadata": {}, "outputs": [], "source": [ - "display(Markdown('### Dark Data Retrieval'))\n", - "\n", + "display(Markdown('### Dark constants retrieval'))\n", + "step_timer.start()\n", "db_parms = cal_db_interface, cal_db_timeout\n", "\n", "constants = get_dark(db_parms, bias_voltage, gain, integration_time,\n", @@ -465,7 +441,8 @@ " lut_label='Bad Pixel Value (ADU)', \n", " aspect=1, x_range=(0, pixels_y), y_range=(0, pixels_x), \n", " panel_x_label='Row Stat (ADU)', panel_y_label='Column Stat (ADU)', \n", - " title = 'Dark Bad Pixels Map')" + " title = 'Dark Bad Pixels Map')\n", + "step_timer.done_step(\"Dark constants retrieval\")" ] }, { @@ -475,7 +452,8 @@ "outputs": [], "source": [ "if corr_bools.get('relgain'):\n", - " display(Markdown('We will now retrieve the relative gain map from the calibration database.'))\n", + " step_timer.start()\n", + " display(Markdown('### Relative gain constant retrieval'))\n", " metadata = ConstantMetaData()\n", " relgain = Constants.CCD(DetectorTypes.pnCCD).RelativeGain()\n", " metadata.calibration_constant = relgain\n", @@ -505,7 +483,8 @@ " panel_x_label='Row Stat (ADU)', panel_y_label='Column Stat (ADU)', \n", " panel_top_low_lim = 0.5, panel_top_high_lim = 1.5, panel_side_low_lim = 0.5, \n", " panel_side_high_lim = 1.5, \n", - " title = f'Relative Gain Map for pnCCD (Gain = 1/{int(gain)})')" + " title = f'Relative Gain Map for pnCCD (Gain = 1/{int(gain)})')\n", + " step_timer.done_step(\"Relative gain constant retrieval\")" ] }, { @@ -515,7 +494,6 @@ "outputs": [], "source": [ "#************************ Calculators ************************#\n", - "\n", "if corr_bools.get('common_mode'):\n", " # Common Mode Correction Calculator:\n", " cmCorrection = xcal.CommonModeCorrection([pixels_x, pixels_y],\n", @@ -534,8 +512,7 @@ " split_evt_mip_threshold,\n", " tagFirstSingles=3, # track along y-axis, left to right (see \n", " nCells=memoryCells, # split_event.py file in pydetlib/lib/src/\n", - " cores=cpuCores, # XFELDetAna/algorithms)\n", - " allowElongated=False,\n", + " allowElongated=False, # XFELDetAna/algorithms)\n", " blockSize=[pixels_x, pixels_y//2],\n", " parallel=run_parallel)\n", "\n", @@ -547,7 +524,6 @@ " split_evt_mip_threshold,\n", " tagFirstSingles=4, # track along y-axis, right to left\n", " nCells=memoryCells,\n", - " cores=cpuCores,\n", " allowElongated=False,\n", " blockSize=[pixels_x, pixels_y//2],\n", " parallel=run_parallel)\n", @@ -565,12 +541,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T15:54:28.771629Z", - "start_time": "2018-12-06T15:54:28.346051Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "#***************** Histogram Calculators ******************#\n", @@ -580,7 +551,6 @@ " bins=bins, \n", " range=bin_range,\n", " nCells=memoryCells,\n", - " cores=cpuCores,\n", " blockSize=blockSize,\n", " parallel=run_parallel,\n", ")\n", @@ -590,7 +560,6 @@ " bins=bins, \n", " range=bin_range,\n", " nCells=memoryCells, \n", - " cores=cpuCores,\n", " blockSize=blockSize,\n", " parallel=run_parallel,\n", ")\n", @@ -601,7 +570,6 @@ " bins=bins,\n", " range=bin_range,\n", " nCells=memoryCells,\n", - " cores=cpuCores,\n", " blockSize=blockSize,\n", " parallel=run_parallel,\n", " )\n", @@ -613,7 +581,6 @@ " bins=bins,\n", " range=bin_range,\n", " nCells=memoryCells, \n", - " cores=cpuCores,\n", " blockSize=blockSize,\n", " parallel=run_parallel,\n", " )\n", @@ -623,7 +590,6 @@ " bins=bins,\n", " range=bin_range,\n", " nCells=memoryCells,\n", - " cores=cpuCores,\n", " blockSize=blockSize,\n", " parallel=run_parallel,\n", " )\n", @@ -634,17 +600,16 @@ " bins=bins,\n", " range=bin_range,\n", " nCells=memoryCells,\n", - " cores=cpuCores,\n", " blockSize=blockSize,\n", " parallel=run_parallel,\n", " )" ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "cell_type": "markdown", + "metadata": { + "tags": [] + }, "source": [ "## Applying corrections to the raw data" ] @@ -656,9 +621,13 @@ "outputs": [], "source": [ "def correct_train(wid, index, tid, data):\n", - " \n", - " data = np.squeeze(data[h5path][\"data.image\"].astype(np.float32))\n", - " raw_data[..., index] = data\n", + "\n", + " data = np.squeeze(data[instrument_src][\"data.image\"].astype(np.float32))\n", + "\n", + " if seq_n == 0:\n", + " raw_data[index, ...] = data\n", + "\n", + " histCalRaw.fill(data) # filling histogram with raw uncorrected data\n", " # equating bad pixels' values to np.nan\n", " # so that the pattern classifier ignores them:\n", " # TODO: To clear this up. Is it on purpose to save corrected data with nans?\n", @@ -666,8 +635,9 @@ "\n", " data -= offset # offset correction\n", " # TODO: to clear this up. why save the badpixels map in the corrected data?\n", - " bpix_data[..., index] = bpix\n", - " off_data[..., index] = data\n", + " bpix_data[index, ...] = bpix\n", + " off_data[index, ...] = data\n", + " histCalOffsetCor.fill(data) # filling histogram with offset corrected data\n", "\n", " # cm: common mode\n", " if corr_bools.get('common_mode'):\n", @@ -675,21 +645,24 @@ " # common mode correction:\n", " data = np.squeeze(cmCorrection.correct(\n", " data, # common mode correction\n", - " cellTable=cell_table,\n", + " cellTable=np.zeros(pixels_y, np.int32),\n", " ))\n", "\n", " # discarding events caused by saturated pixels:\n", " # we equate these values to np.nan so that the pattern classifier ignores them:\n", " data[data >= saturated_threshold] = np.nan\n", - " cm_data[..., index] = data\n", + " cm_data[index, ...] = data\n", + " histCalCommonModeCor.fill(data) # filling histogram with common mode corrected data\n", "\n", " if corr_bools.get('relgain'):\n", " data /= rg # relative gain correction\n", - " rg_data[..., index] = rg.astype(np.float32) # TODO: Why saving the calibration constant data?\n", - " rg_corr_data[..., index] = data\n", + " rg_data[index, ...] = rg.astype(np.float32) # TODO: Why saving the calibration constant data?\n", "\n", - " if corr_bools.get('pattern_class'):\n", + " if seq_n == 0:\n", + " rg_corr_data[index, ...] = data\n", + " histCalGainCor.fill(data) # filling histogram with gain corrected data\n", "\n", + " if corr_bools.get('pattern_class'):\n", " # Dividing the data into left and right hemispheres:\n", " dataLH = data[:, :pixels_x//2]\n", " dataRH = data[:, pixels_x//2:]\n", @@ -699,13 +672,17 @@ "\n", " data[:, :pixels_x//2] = np.squeeze(dataLH)\n", " data[:, pixels_x//2:] = np.squeeze(dataRH)\n", + "\n", " patterns = np.zeros(data.shape, patternsLH.dtype)\n", " patterns[:, :pixels_x//2] = np.squeeze(patternsLH)\n", " patterns[:, pixels_x//2:] = np.squeeze(patternsRH)\n", "\n", " data[data < split_evt_primary_threshold*noise] = 0\n", - " cls_data[..., index] = np.squeeze(data)\n", - " ptrn_data[..., index] = np.squeeze(patterns)" + " cls_data[index, ...] = np.squeeze(data)\n", + " histCalPcorr.fill(data) # filling histogram with split events corrected data\n", + " ptrn_data[index, ...] = np.squeeze(patterns)\n", + " data[patterns != 100] = np.nan # Discard doubles, triples, quadruple, clusters, first singles\n", + " histCalPcorrS.fill(data) # filling histogram with singles events data" ] }, { @@ -714,181 +691,156 @@ "metadata": {}, "outputs": [], "source": [ - "step_timer = StepTimer()\n", "# 10 is a number chosen after testing 1 ... 71 parallel threads\n", "parallel_num_threads = 10\n", + "context = psh.context.ThreadContext(num_workers=parallel_num_threads)\n", "\n", - "# Data corrections and event classifications happen here.\n", - "# Also, the corrected data are written to datasets:\n", + "plt_uncor = None\n", + "\n", + "data_path = \"INSTRUMENT/\"+instrument_src+\"/data/\"\n", "\n", "offset = np.squeeze(constants[\"Offset\"])\n", "noise = np.squeeze(constants[\"Noise\"])\n", "bpix = np.squeeze(constants[\"BadPixelsDark\"])\n", "rg = constants.get(\"RelativeGain\")\n", "\n", - "cell_table = np.zeros(1024, np.int32)\n", + "corr_comp_fields = {}\n", + "kw = {\"compression\": \"gzip\"}\n", + "comp_fields = [\"gain\", \"patterns\", \"pixels_classified\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def write_dataset(ofile, data, field, kw={}):\n", + " ofile.create_dataset(\n", + " f\"{data_path}/{field}\",\n", + " data=data,\n", + " chunks=(chunk_size_idim, pixels_x, pixels_y),\n", + " dtype=data.dtype,\n", + " **kw,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Data corrections and event classifications happen here.\n", + "# Also, the corrected data are written to datasets:\n", + "for seq_n, seq_f in enumerate(file_list):\n", + " f_dc = H5File(seq_f)\n", + " out_fileb = f\"{out_folder}/{seq_f.split('/')[-1]}\"\n", + " out_file = out_fileb.replace(\"RAW\", \"CORR\")\n", "\n", - "plt_uncor = None\n", + " step_timer.start()\n", + " dshape = f_dc[instrument_src, \"data.image\"].shape\n", + " n_imgs = dshape[0]\n", + " # If you want to analyze only a certain number of frames\n", + " # instead of all available good frames.\n", + " if limit_images > 0:\n", + " n_imgs = min(n_imgs, limit_images)\n", + " data_shape = (n_imgs, dshape[1], dshape[2])\n", + " print(f\"Correcting file: {seq_f} of shape {data_shape}.\")\n", + "\n", + " data_dc = f_dc.select(\n", + " instrument_src, \"data.image\",\n", + " require_all=True).select_trains(np.s_[:n_imgs])\n", + " \n", + " # Allocating shared arrays for data arrays for each correction stage.\n", "\n", - "for k, f in enumerate(file_list):\n", - " f_dc = H5File(f)\n", - " out_fileb = f\"{out_folder}/{f.split('/')[-1]}\"\n", - " out_file = out_fileb.replace(\"RAW\", \"CORR\")\n", + " off_data = context.alloc(shape=data_shape, dtype=np.float32)\n", + " bpix_data = context.alloc(shape=data_shape, dtype=np.uint32)\n", "\n", - " context = psh.context.ThreadContext(num_workers=parallel_num_threads)\n", - " try:\n", - " step_timer.start()\n", - " dshape = f_dc[h5path, \"data.image\"].shape\n", - " n_imgs = dshape[0]\n", - " # If you want to analyze only a certain number of frames\n", - " # instead of all available good frames.\n", - " if limit_images > 0:\n", - " n_imgs = limit_images\n", - " print(f\"Correcting file: {f} of shape {(n_imgs,) + dshape[-2:]}.\")\n", - "\n", - " data_dc = f_dc.select(\n", - " h5path, \"data.image\",\n", - " require_all=True).select_trains(np.s_[:n_imgs])\n", - "\n", - " # Allocating shared arrays for data arrays for each correction stage.\n", - " raw_data = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", - "\n", - " off_data = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", - " bpix_data = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", + " if corr_bools.get('common_mode'):\n", + " cm_data = context.alloc(shape=data_shape, dtype=np.float32)\n", "\n", - " if corr_bools.get('common_mode'):\n", - " cm_data = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", + " if corr_bools.get('relgain'):\n", + " rg_data = context.alloc(shape=data_shape, dtype=np.float32)\n", + " \n", + "\n", + " if corr_bools.get('pattern_class'):\n", + " cls_data = context.alloc(shape=data_shape, dtype=np.float32)\n", + " ptrn_data = context.alloc(shape=data_shape, dtype=np.int32)\n", + "\n", + " # Only for plotting\n", + " if seq_n == 0:\n", + " raw_data = context.alloc(shape=data_shape, dtype=np.float32)\n", " if corr_bools.get('relgain'):\n", - " rg_data = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", " rg_corr_data = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", - " if corr_bools.get('pattern_class'):\n", - " cls_data = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", - " ptrn_data = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", - " final_cor = context.alloc(\n", - " shape=(dshape[1], dshape[2], n_imgs), dtype=np.float32)\n", - "\n", - " # data set to save split event corrected images:\n", - " # The calculation of the cluster map:\n", - " step_timer.done_step(f'Preparation.')\n", - " step_timer.start()\n", - " context.map(\n", - " correct_train,\n", - " data_dc,\n", - " )\n", - " \n", - " # Filling histogram calculators.\n", - " histCalRaw.fill(raw_data) # filling histogram with raw uncorrected data\n", - " histCalOffsetCor.fill(off_data) # filling histogram with offset corrected data\n", + " shape=data_shape, dtype=np.float32)\n", + "\n", + " # data set to save split event corrected images:\n", + " # The calculation of the cluster map:\n", + " step_timer.done_step(f'Preparing shared arrays.')\n", + "\n", + " step_timer.start()\n", + "\n", + " context.map(correct_train, data_dc)\n", + "\n", + " step_timer.done_step(f'Correction.')\n", + "\n", + " step_timer.start()\n", + " corr_arrays = {\n", + " \"pixels\": off_data.astype(np.float32),\n", + " \"mask\": bpix_data.astype(np.uint32), \n", + " }\n", + "\n", + " if seq_n == 0:\n", + " # Offset corrected images for first sequence only:\n", + " off_cor = off_data.copy()\n", + " # cm: common mode\n", " if corr_bools.get('common_mode'):\n", - " histCalCommonModeCor.fill(cm_data) # filling histogram with common mode corrected data\n", + " # common mode corrected images for first sequence only:\n", + " cm_cor = cm_data.copy()\n", + " corr_arrays[\"pixels_cm\"] = cm_data.astype(np.float32)\n", + "\n", " if corr_bools.get('relgain'):\n", - " histCalGainCor.fill(rg_corr_data) # filling histogram with gain corrected data\n", - " if corr_bools.get('pattern_class'): \n", - " histCalPcorr.fill(cls_data) # filling histogram with split events corrected data\n", - " cls_data[ptrn_data != 100] = np.nan # Discard doubles, triples, quadruple, clusters, first singles\n", - " histCalPcorrS.fill(cls_data) # filling histogram with singles events data\n", - "\n", - " step_timer.done_step(f'Correction.')\n", - "\n", - " step_timer.start()\n", - "\n", - " if k == 0:\n", - " plt_uncor = raw_data\n", - " # Offset corrected images for first sequence only:\n", - " off_cor = np.copy(off_data)\n", - " final_cor = off_cor\n", - " # cm: common mode\n", - " if corr_bools.get('common_mode'):\n", - " # common mode corrected images for first sequence only:\n", - " cm_cor = np.copy(cm_data)\n", - " final_cor = cm_cor\n", - " if corr_bools.get('relgain'):\n", - " # gain corrected images for first sequence only:\n", - " g_cor = np.copy(rg_corr_data)\n", - " final_cor = g_cor\n", - " if corr_bools.get('pattern_class'):\n", - " # split event corrected images for first sequence only\n", - " # (also these events are only singles events):\n", - " final_cor = cls_data\n", - " with h5py.File(out_file, 'w') as ofile:\n", - " # Copy RAW non-calibrated sources.\n", - " with h5py.File(f, 'r') as sfile:\n", - " h5_copy_except.h5_copy_except_paths(\n", - " sfile, ofile,\n", - " [\"INSTRUMENT/\"+h5path+\"/data/image\"],\n", - " )\n", - " # TODO: to clear this up: why save corrected data in data/pixels rather than data/image.\n", - " # corr_run : /gpfs/exfel/d/proc/SQS/202131/p900236/r0044/CORR-R0044-PNCCD01-S00000.h5 still has data/image. most probably a bug.\n", - " # data set to save offset corrected images:\n", - " ddset = ofile.create_dataset(\n", - " \"INSTRUMENT/\"+h5path+\"/data/pixels\",\n", - " data=np.moveaxis(off_data, 2, 0),\n", - " chunks=(chunk_size_idim, dshape[1], dshape[2]),\n", - " dtype=np.float32,\n", - " )\n", - " # data set to create bad pixels:\n", - " ddsetm = ofile.create_dataset(\n", - " \"INSTRUMENT/\"+h5path+\"/data/mask\",\n", - " data=np.moveaxis(bpix_data, 2, 0),\n", - " chunks=(chunk_size_idim, dshape[1], dshape[2]),\n", - " dtype=np.uint32,\n", - " compression=\"gzip\",\n", - " )\n", - " # cm: common mode\n", - " if corr_bools.get('common_mode'):\n", - " # data set to save common mode corrected images:\n", - " ddsetcm = ofile.create_dataset(\n", - " \"INSTRUMENT/\"+h5path+\"/data/pixels_cm\",\n", - " data=np.moveaxis(cm_data, 2, 0),\n", - " chunks=(chunk_size_idim, dshape[1], dshape[2]),\n", - " dtype=np.float32,\n", - " )\n", - " if corr_bools.get('relgain'):\n", - " # data set to save gain corrected images:\n", - " ddsetg = ofile.create_dataset(\n", - " \"INSTRUMENT/\"+h5path+\"/data/gain\",\n", - " data=np.moveaxis(rg_data, 2, 0),\n", - " chunks=(chunk_size_idim, dshape[1], dshape[2]),\n", - " dtype=np.float32,\n", - " compression=\"gzip\",\n", - " )\n", - " data = corr_data\n", - "\n", - " if corr_bools.get('pattern_class'):\n", - " # c: classifications, p: even patterns\n", - " ddsetc = ofile.create_dataset(\n", - " \"INSTRUMENT/\"+h5path+\"/data/pixels_classified\",\n", - " data=np.moveaxis(cls_data, 2, 0),\n", - " chunks=(chunk_size_idim, dshape[1], dshape[2]),\n", - " dtype=np.float32,\n", - " compression=\"gzip\",\n", - " )\n", - " # data set to save different valid patterns:\n", - " ddsetp = ofile.create_dataset(\n", - " \"INSTRUMENT/\"+h5path+\"/data/patterns\",\n", - " data=np.moveaxis(ptrn_data, 2, 0),\n", - " chunks=(chunk_size_idim, dshape[1], dshape[2]),\n", - " dtype=np.int32,\n", - " compression=\"gzip\",\n", - " )\n", - " step_timer.done_step(f'Storing data.')\n", - " \"\"\"\n", - " except Exception as e:\n", - " print(f\"Couldn't calibrate data in {f}: {e}\\n\")\n", - " traceback.print_exc(limit=1)\n", + " # gain corrected images for first sequence only:\n", + " g_cor = rg_corr_data.copy()\n", + " corr_arrays[\"gain\"] = rg_data.astype(np.float32)\n", "\n", + " if corr_bools.get('pattern_class'):\n", + " # split event corrected images for first sequence only\n", + " # (also these events are only singles events):\n", + " cls_cor = cls_data.copy()\n", + " corr_arrays[\"pixels_classified\"] = cls_data.astype(np.float32)\n", + " corr_arrays[\"patterns\"] = ptrn_data.astype(np.int32)\n", + "\n", + " # Storing corrected data sources.\n", + " with h5py.File(out_file, 'w') as ofile:\n", + " # Copy RAW non-calibrated sources.\n", + " with h5py.File(f, 'r') as sfile:\n", + " h5_copy_except.h5_copy_except_paths(\n", + " sfile, ofile,\n", + " [\"INSTRUMENT/\"+instrument_src+\"/data/image\"],\n", + " )\n", + " for field, arr in corr_arrays.items():\n", + " write_dataset(\n", + " ofile, arr, field,\n", + " kw=kw if field in comp_fields else {})\n", + " # TODO: to clear this up: why save corrected data in data/pixels rather than data/image.\n", + " step_timer.done_step(f'Storing data.')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "print(\"In addition to offset correction, the following corrections were performed:\")\n", "for k, v in corr_bools.items():\n", " if v:\n", - " print(k)" + " print(\" -\", k.upper())\n", + "\n", + "print(f\"Total processing time {step_timer.timespan():.01f} s\")\n", + "step_timer.print_summary()" ] }, { @@ -1001,7 +953,7 @@ "fig = xana.simplePlot(figure, aspect=1, x_label='ADU', y_label='Number of Occurrences', figsize='2col',\n", " y_log=True, x_range=bin_range, title = '1 ADU per bin is used.',\n", " legend='top-right-frame-1col')\n", - "step_timer.done_step('Plotting (Raw vs. Corrected Spectra.)')" + "step_timer.done_step('Plotting')" ] }, { @@ -1085,8 +1037,9 @@ "outputs": [], "source": [ "display(Markdown('### Classification Results - Tabulated Statistics'))\n", - "step_timer.start()\n", + "\n", "if corr_bools.get('pattern_class'):\n", + " step_timer.start()\n", " t0 = PrettyTable()\n", " t0.title = \"Total Number of Counts after All Corrections\"\n", " t0.field_names = [\"Hemisphere\", \"Singles\", \"First-Singles\", \"Clusters\"]\n", @@ -1106,18 +1059,13 @@ " t1.add_row([3, patternStatsLH['doubles'][3], patternStatsRH['doubles'][3], patternStatsLH['triples'][3], \n", " patternStatsRH['triples'][3], patternStatsLH['quads'][3], patternStatsRH['quads'][3]])\n", " print(t1)\n", - "step_timer.done_step('Classification Results - Tabulated Statistics')" + " step_timer.done_step('Classification Results - Tabulated Statistics')" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T16:10:56.190150Z", - "start_time": "2018-12-06T16:10:56.177570Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "if corr_bools.get('pattern_class'):\n", @@ -1152,18 +1100,13 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T16:10:56.203219Z", - "start_time": "2018-12-06T16:10:56.191509Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "display(Markdown('### Classification Results - Pie Charts'))\n", - "step_timer.start()\n", "\n", "if corr_bools.get('pattern_class'):\n", + " step_timer.start()\n", " fig = plt.figure(figsize=(12, 7))\n", " ax = fig.add_subplot(1, 2, 1)\n", " labels = ['Singles', 'Doubles', 'Triples', 'Quads']\n", @@ -1176,7 +1119,7 @@ " ax.set_title(\"Pattern Occurrence in RH\")\n", " # Set aspect ratio to be equal so that pie is drawn as a circle.\n", " a = ax.axis('equal')\n", - "step_timer.done_step('Classification Results - Pie Charts')" + " step_timer.done_step('Classification Results - Pie Charts')" ] }, { @@ -1189,23 +1132,20 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T16:10:56.212586Z", - "start_time": "2018-12-06T16:10:56.204731Z" - } - }, + "metadata": {}, "outputs": [], "source": [ - "uncor_mean_im = np.nanmean(plt_uncor, axis=2)\n", - "offset_mean_im = np.nanmean(off_cor, axis=2)\n", + "step_timer.start()\n", + "\n", + "uncor_mean_im = np.nanmean(raw_data, axis=0)\n", + "offset_mean_im = np.nanmean(off_cor, axis=0)\n", "\n", "if corr_bools.get('common_mode'):\n", - " cm_mean_im = np.nanmean(cm_cor, axis=2)\n", + " cm_mean_im = np.nanmean(cm_cor, axis=0)\n", "if corr_bools.get('relgain'):\n", - " gain_mean_im = np.nanmean(g_cor, axis=2)\n", + " gain_mean_im = np.nanmean(g_cor, axis=0)\n", "if corr_bools.get('pattern_class'):\n", - " mean_im_cc = np.nanmean(final_cor, axis=2)\n", + " mean_im_cc = np.nanmean(cls_cor, axis=0)\n", "\n", "fig = xana.heatmapPlot(uncor_mean_im, x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', aspect=1, \n", " x_range=(0, pixels_y), y_range=(0, pixels_x), \n", @@ -1233,7 +1173,8 @@ "if corr_bools.get('pattern_class'):\n", " fig = xana.heatmapPlot(mean_im_cc, x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', aspect=1,\n", " x_range=(0, pixels_y), y_range=(0, pixels_x), vmin=0, vmax= 18000,\n", - " title = 'Image of Single Events Averaged over Frames in the First Sequence')" + " title = 'Image of Single Events Averaged over Frames in the First Sequence')\n", + "step_timer.done_step(\"Plotting\")" ] }, { @@ -1246,43 +1187,40 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-12-06T16:11:08.317130Z", - "start_time": "2018-12-06T16:11:05.788655Z" - } - }, + "metadata": {}, "outputs": [], "source": [ - "fig = xana.heatmapPlot(plt_uncor[:,:,0], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', aspect=1, \n", + "step_timer.start()\n", + "fig = xana.heatmapPlot(raw_data[0, :, :], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', aspect=1, \n", " x_range=(0, pixels_y), y_range=(0, pixels_x), \n", " panel_x_label='Row Stat (ADU)', panel_y_label='Column Stat (ADU)', \n", " title = 'Uncorrected Image (First Frame of the First Sequence)')\n", "\n", - "fig = xana.heatmapPlot(off_cor[:,:,0], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', aspect=1, \n", + "fig = xana.heatmapPlot(off_cor[0, :, :], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', aspect=1, \n", " x_range=(0, pixels_y), y_range=(0, pixels_x),\n", " panel_x_label='Row Stat (ADU)', panel_y_label='Column Stat (ADU)', \n", " title = 'Offset Corrected Image (First Frame of the First Sequence)')\n", "\n", "if corr_bools.get('common_mode'):\n", - " fig = xana.heatmapPlot(cm_cor[:,:,2], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', \n", + " fig = xana.heatmapPlot(cm_cor[0, :, :], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', \n", " aspect=1, \n", " x_range=(0, pixels_y), y_range=(0, pixels_x), \n", " panel_x_label='Row Stat (ADU)', panel_y_label='Column Stat (ADU)', \n", " title = 'Common Mode Corrected Image (First Frame of the First Sequence)')\n", " \n", "if corr_bools.get('relgain'):\n", - " fig = xana.heatmapPlot(g_cor[:,:,0], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', \n", + " fig = xana.heatmapPlot(g_cor[0, :, :], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', \n", " aspect=1, \n", " x_range=(0, pixels_y), y_range=(0, pixels_x), \n", " panel_x_label='Row Stat (ADU)', panel_y_label='Column Stat (ADU)', \n", " title = 'Gain Corrected Image (First Frame of the First Sequence)')\n", "\n", "if corr_bools.get('pattern_class'): \n", - " fig = xana.heatmapPlot(final_cor[:,:,0], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', aspect=1,\n", + " fig = xana.heatmapPlot(cls_cor[0, :, :], x_label='Columns', y_label='Rows', lut_label='Signal (ADU)', aspect=1,\n", " x_range=(0, pixels_y), y_range=(0, pixels_x), \n", " panel_x_label='Row Stat (ADU)', panel_y_label='Column Stat (ADU)', \n", - " title = 'Image of Single Events (First Frame of the First Sequence)')" + " title = 'Image of Single Events (First Frame of the First Sequence)')\n", + "step_timer.done_step(\"Plotting\")" ] }, { @@ -1328,8 +1266,8 @@ " with H5File(\n", " f\"{out_folder}/{path_template.format(run, karabo_da, sequences[0]).replace('RAW', 'CORR')}\"\n", " ) as dc:\n", - " data = dc[h5path, \"data.pixels_classified\"].ndarray()\n", - " patterns = dc[h5path, \"data.patterns\"].ndarray()\n", + " data = dc[instrument_src, \"data.pixels_classified\"].ndarray()\n", + " patterns = dc[instrument_src, \"data.patterns\"].ndarray()\n", " # events' patterns indices are as follows: 100 (singles), 101 (first singles), 200 - 203 (doubles),\n", " # 300 - 303 (triples), and 400 - 403 (quadruples). Note that for the last three types of patterns, \n", " # there are left, right, up, and down indices.\n", @@ -1337,23 +1275,23 @@ " # Separating the events:\n", " # Singles and First Singles:\n", " for s in range(100, 102):\n", - " single = copy.copy(data[...])\n", + " single = data.copy()\n", " single[patterns != s] = np.nan\n", " singles.append(single)\n", "\n", "\n", " for d in range(200, 204):\n", - " double = copy.copy(data[...])\n", + " double = data.copy()\n", " double[patterns != d] = np.nan\n", " doubles.append(double)\n", "\n", " for t in range(300, 304):\n", - " triple = copy.copy(data[...])\n", + " triple = data.copy()\n", " triple[patterns != t] = np.nan\n", " triples.append(triple) \n", "\n", " for q in range(400, 404):\n", - " quad = copy.copy(data[...])\n", + " quad = data.copy()\n", " quad[patterns != q] = np.nan\n", " quads.append(quad)" ] @@ -1365,6 +1303,7 @@ "outputs": [], "source": [ "if corr_bools.get('pattern_class'):\n", + " step_timer.start()\n", " hA = 0\n", " h = 0\n", " for single in singles:\n", @@ -1409,7 +1348,8 @@ " ax.step(e[:-1], h, color='purple', label='Events Splitting on Quadruple Pixels')\n", "\n", " ax.step(e[:-1], hA, color='grey', label='All Valid Events')\n", - " l = ax.legend()" + " l = ax.legend()\n", + " step_timer.done_step(\"Plotting\")" ] }, { @@ -1436,7 +1376,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.8.11" }, "latex_envs": { "LaTeX_envs_menu_present": true, @@ -1457,5 +1397,5 @@ } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 }