diff --git a/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb b/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb index 7a174bdd77310197f6da7ba559a3eb700af70136..6776037feeb2cd71da04303042bbb2902f2ff6b0 100644 --- a/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb +++ b/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb @@ -27,11 +27,11 @@ "metadata": {}, "outputs": [], "source": [ - "in_folder = '/gpfs/exfel/exp/HED/202201/p002804/raw' # input folder, required\n", + "in_folder = '/gpfs/exfel/exp/HED/202330/p900338/raw' # input folder, required\n", "out_folder = '' # output folder, required\n", "metadata_folder = '' # Directory containing calibration_metadata.yml when run by xfel-calibrate\n", "sequence = 0 # sequence file to use\n", - "run = 281 # which run to read data from, required\n", + "run = 176 # which run to read data from, required\n", "\n", "# Parameters for accessing the raw data.\n", "karabo_id = \"HED_IA1_EPX100-1\" # karabo karabo_id\n", @@ -53,7 +53,8 @@ "fix_integration_time = -1 # Integration time. Set to -1 to read from .h5 file\n", "fix_temperature = -1 # Fixed temperature in Kelvin. Set to -1 to read from .h5 file\n", "temp_limits = 5 # Limit for parameter Operational temperature\n", - "badpixel_threshold_sigma = 5. # Bad pixels defined by values outside n times this std from median. Default: 5\n", + "badpixel_noise_sigma = 5 # Bad pixels defined by noise value outside n * std from median. Default: 5\n", + "badpixel_offset_sigma = 2 # Bad pixels defined by offset value outside n * std from median. Default: 2\n", "CM_N_iterations = 2 # Number of iterations for common mode correction. Set to 0 to skip it\n", "\n", "# Parameters used during selecting raw data trains.\n", @@ -359,15 +360,15 @@ " lut_label='[ADU]',\n", " x_label='Column', \n", " y_label='Row',\n", - " vmin=max(0, np.round((stats['median'] - badpixel_threshold_sigma*stats['std']))), \n", - " vmax=np.round(stats['median'] + badpixel_threshold_sigma*stats['std'])\n", + " vmin=max(0, np.round((stats['median'] - badpixel_noise_sigma*stats['std']))), \n", + " vmax=np.round(stats['median'] + badpixel_noise_sigma*stats['std'])\n", ")\n", "fig.suptitle('Noise Map', x=.5, y=.9, fontsize=16)\n", "fig.set_size_inches(h=15, w=15)\n", "\n", "# Calculate overall noise histogram\n", - "bins = np.arange(max(0, stats['mean'] - badpixel_threshold_sigma*stats['std']),\n", - " stats['mean'] + badpixel_threshold_sigma*stats['std'], \n", + "bins = np.arange(max(0, stats['mean'] - badpixel_noise_sigma*stats['std']),\n", + " stats['mean'] + badpixel_noise_sigma*stats['std'], \n", " stats['std']/100)\n", "\n", "h, c = np.histogram(\n", @@ -415,8 +416,8 @@ " aspect=1.5,\n", " x_label='Noise [ADU]',\n", " y_label='Counts',\n", - " x_range=(max(0, stats['median'] - badpixel_threshold_sigma*stats['std']),\n", - " stats['median'] + badpixel_threshold_sigma*stats['std']),\n", + " x_range=(max(0, stats['median'] - badpixel_noise_sigma*stats['std']),\n", + " stats['median'] + badpixel_noise_sigma*stats['std']),\n", " y_range=(0, max(d[0]['y'])*1.1),\n", ")\n", "plt.grid(linestyle = ':')\n", @@ -571,11 +572,11 @@ "constant_maps['BadPixelsDark'] = np.zeros(constant_maps['Offset'].shape, np.uint32)\n", "\n", "# Find noise related bad pixels\n", - "constant_maps['BadPixelsDark'][eval_bpidx(constant_maps['Noise'], badpixel_threshold_sigma, sensor_size//2)] = BadPixels.NOISE_OUT_OF_THRESHOLD.value\n", + "constant_maps['BadPixelsDark'][eval_bpidx(constant_maps['Noise'], badpixel_noise_sigma, sensor_size//2)] = BadPixels.NOISE_OUT_OF_THRESHOLD.value\n", "constant_maps['BadPixelsDark'][~np.isfinite(constant_maps['Noise'])] = BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n", "\n", "# Find offset related bad pixels\n", - "constant_maps['BadPixelsDark'][eval_bpidx(constant_maps['Offset'], badpixel_threshold_sigma, sensor_size//2)] = BadPixels.OFFSET_OUT_OF_THRESHOLD.value\n", + "constant_maps['BadPixelsDark'][eval_bpidx(constant_maps['Offset'], badpixel_offset_sigma, sensor_size//2)] = BadPixels.OFFSET_OUT_OF_THRESHOLD.value\n", "constant_maps['BadPixelsDark'][~np.isfinite(constant_maps['Offset'])] = BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n", "\n", "# Plot Bad Pixels Map\n", @@ -620,7 +621,7 @@ " print('Common mode correction not applied.')\n", "else:\n", " \n", - " commonModeBlockSize = sensor_size//2\n", + " commonModeBlockSize = (sensor_size//[8,2]).astype(int) # bank size (x=96,y=354) pixels\n", "\n", " # Instantiate common mode calculators for column and row CM correction\n", " cmCorrection_col = xcal.CommonModeCorrection(\n", @@ -672,7 +673,7 @@ " noise_map_corrected = np.nanstd(data, axis=0)[..., np.newaxis]\n", "\n", " # Update bad pixels map \n", - " constant_maps['BadPixelsDark'][eval_bpidx(noise_map_corrected, badpixel_threshold_sigma, sensor_size//2)] = BadPixels.NOISE_OUT_OF_THRESHOLD.value\n", + " constant_maps['BadPixelsDark'][eval_bpidx(noise_map_corrected, badpixel_noise_sigma, sensor_size//2)] = BadPixels.NOISE_OUT_OF_THRESHOLD.value\n", " bp_offset.append(np.sum(constant_maps['BadPixelsDark']==1))\n", " bp_noise.append(np.sum(constant_maps['BadPixelsDark']==2))\n", "\n",