diff --git a/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb b/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb index 134e7e0bb729e7faf6c1509ea6d65c46156709d2..b455ca34d83b62c720521b93b351e917df945f6a 100644 --- a/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb +++ b/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb @@ -112,7 +112,6 @@ "if not karabo_id_control:\n", " karabo_id_control = karabo_id\n", "\n", - "instrument_src = instrument_source_template.format(karabo_id, receiver_template)\n", "ctrl_src = ctrl_source_template.format(karabo_id_control, control_template)\n", "\n", "print(f\"Process modules: {karabo_da} for run {run}\")\n", @@ -160,6 +159,22 @@ "step_timer = StepTimer()" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "7bf7fb32", + "metadata": {}, + "outputs": [], + "source": [ + "run_dc = RunDirectory(run_folder)\n", + "\n", + "# Decide if we are processing 2 25um or 1 50um Gotthard-II\n", + "\n", + "receivers = list(run_dc.select(f'{karabo_id}/DET/{receiver_template}*').all_sources)\n", + "\n", + "corr_karabo_da = receivers[0].split(\"/\")[-1].split(\":\")[0][:-2]" + ] + }, { "cell_type": "code", "execution_count": null, @@ -168,7 +183,6 @@ "outputs": [], "source": [ "# Read slow data\n", - "run_dc = RunDirectory(run_folder)\n", "g2ctrl = gotthard2lib.Gotthard2Ctrl(run_dc=run_dc, ctrl_src=ctrl_src)\n", "\n", "if bias_voltage == -1:\n", @@ -186,7 +200,13 @@ "print(\"Exposure Time:\", exposure_time)\n", "print(\"Exposure Period:\", exposure_period)\n", "print(\"Acquisition Rate:\", acquisition_rate)\n", - "print(\"Single Photon:\", single_photon)" + "print(\"Single Photon:\", single_photon)\n", + "\n", + "# Decide if GH2 is 25um or 50um\n", + "gh2_hostname = run_dc.get_run_value(ctrl_src, \"rxHostname\")\n", + "# gh2_hostname is a vector of bytes objects.\n", + "# GH2 25um has two hostnames unlike 50um which has one.\n", + "gh2_detector = \"25um\" if gh2_hostname[1].decode(\"utf-8\") else \"50um\"" ] }, { @@ -229,7 +249,7 @@ " db_modules = [None] * len(karabo_da)\n", "\n", "if constants_file:\n", - " for mod in karabo_da:\n", + " for mod in receivers:\n", " const_data[mod] = dict()\n", " # load constants temporarily using defined local paths.\n", " with h5py.File(constants_file, \"r\") as cfile:\n", @@ -327,9 +347,9 @@ " data_corr[index, ...],\n", " mask[index, ...],\n", " g,\n", - " const_data[mod][\"OffsetGotthard2\"],\n", - " const_data[mod][\"RelativeGainGotthard2\"], \n", - " const_data[mod][\"Mask\"],\n", + " const_data[rec_mod][\"OffsetGotthard2\"],\n", + " const_data[rec_mod][\"RelativeGainGotthard2\"], \n", + " const_data[rec_mod][\"Mask\"],\n", " apply_offset=offset_correction,\n", " apply_gain=gain_correction,\n", " )" @@ -342,22 +362,29 @@ "metadata": {}, "outputs": [], "source": [ - "for mod in karabo_da:\n", - " # This is used in case receiver template consists of\n", - " # karabo data aggregator index. e.g. detector at DETLAB\n", - " instr_mod_src = instrument_src.format(mod[-2:])\n", - " data_path = \"INSTRUMENT/\" + instr_mod_src + \"/data\"\n", - " for raw_file in seq_files:\n", - " step_timer.start()\n", + "for raw_file in seq_files:\n", "\n", - " dc = H5File(raw_file)\n", - " out_file = out_folder / raw_file.name.replace(\"RAW\", \"CORR\")\n", + " out_file = out_folder / raw_file.name.replace(\"RAW\", \"CORR\")\n", + " # Select module INSTRUMENT sources and deselect empty trains.\n", + " dc = H5File(raw_file).select(receivers, require_all=True)\n", "\n", - " # Select module INSTRUMENT source and deselect empty trains.\n", - " dc = dc.select(instr_mod_src, require_all=True)\n", - " data = dc[instr_mod_src, \"data.adc\"].ndarray()\n", - " gain = dc[instr_mod_src, \"data.gain\"].ndarray()\n", - " step_timer.done_step(\"preparing raw data\")\n", + " n_trains = len(dc.train_ids)\n", + "\n", + " # Initialize GH2 data and gain arrays to store in corrected files.\n", + " if gh2_detector == \"25um\":\n", + " data_stored = np.zeros((dc[receivers[0], \"data.adc\"].shape[:2] + (1280 * 2,)), dtype=np.float32)\n", + " gain_stored = np.zeros((dc[receivers[0], \"data.adc\"].shape[:2] + (1280 * 2,)), dtype=np.uint8)\n", + " else:\n", + " data_stored = None\n", + " gain_stored = None\n", + "\n", + " for i, rec_mod in enumerate(receivers):\n", + " step_timer.start()\n", + " print(f\"Correcting {rec_mod} for {raw_file}\")\n", + "\n", + " data = dc[rec_mod, \"data.adc\"].ndarray()\n", + " gain = dc[rec_mod, \"data.gain\"].ndarray()\n", + " step_timer.done_step(\"Preparing raw data\")\n", " dshape = data.shape\n", "\n", " step_timer.start()\n", @@ -366,7 +393,7 @@ " data_corr = context.alloc(shape=dshape, dtype=np.float32)\n", " mask = context.alloc(shape=dshape, dtype=np.uint32)\n", " context.map(correct_train, data)\n", - " step_timer.done_step(\"Correcting one sequence file\")\n", + " step_timer.done_step(f\"Correcting one receiver in one sequence file\")\n", "\n", " step_timer.start()\n", "\n", @@ -375,48 +402,56 @@ " data_corr[np.isinf(data_corr)] = np.nan\n", "\n", " # Create CORR files and add corrected data sections.\n", - " image_counts = dc[instrument_src, \"data.adc\"].data_counts(labelled=False)\n", - "\n", - " with DataFile(out_file, \"w\") as ofile:\n", - " # Create INDEX datasets.\n", - " ofile.create_index(dc.train_ids, from_file=dc.files[0])\n", - " # Create METDATA datasets\n", - " ofile.create_metadata(\n", - " like=dc,\n", - " sequence=dc.run_metadata()[\"sequenceNumber\"],\n", - " instrument_channels=(f\"{instrument_src}/data\",)\n", - " )\n", + " image_counts = dc[rec_mod, \"data.adc\"].data_counts(labelled=False)\n", + "\n", + " if gh2_detector == \"25um\":\n", + " data_stored[..., i::2] = data_corr.copy()\n", + " gain_stored[..., i::2] = gain.copy()\n", + " else: # \"50um\"\n", + " data_stored = data_corr\n", + " gain_stored = gain\n", + "\n", + " with DataFile(out_file, \"w\") as ofile:\n", + " # Create INDEX datasets.\n", + " ofile.create_index(dc.train_ids, from_file=dc.files[0])\n", + " ofile.create_metadata(\n", + " like=dc,\n", + " sequence=dc.run_metadata()[\"sequenceNumber\"],\n", + " instrument_channels=(f\"{instrument_src}/data\",)\n", + " )\n", "\n", - " # Create Instrument section to later add corrected datasets.\n", - " outp_source = ofile.create_instrument_source(instrument_src)\n", + " # Create Instrument section to later add corrected datasets.\n", + " outp_source = ofile.create_instrument_source(f\"{karabo_id}/DET/{corr_karabo_da}:daqOutput\")\n", "\n", - " # Create count/first datasets at INDEX source.\n", - " outp_source.create_index(data=image_counts)\n", + " # Create count/first datasets at INDEX source.\n", + " outp_source.create_index(data=image_counts)\n", "\n", - " # Store uncorrected trainId in the corrected file.\n", - " outp_source.create_key(\n", - " f\"data.trainId\", data=dc.train_ids,\n", - " chunks=min(50, len(dc.train_ids))\n", - " )\n", - "\n", - " # Create datasets with the available corrected data\n", - " for field_name, field_data in {\n", - " \"adc\": data_corr,\n", - " \"gain\": gain,\n", - " }.items():\n", - " outp_source.create_key(\n", - " f\"data.{field_name}\", data=field_data,\n", - " chunks=((chunks_data,) + data_corr.shape[1:])\n", + " # Store uncorrected trainId in the corrected file.\n", + " outp_source.create_key(\n", + " f\"data.trainId\", data=dc.train_ids,\n", + " chunks=min(50, len(dc.train_ids))\n", " )\n", "\n", - " for field in [\"bunchId\", \"memoryCell\", \"frameNumber\", \"timestamp\"]:\n", + " # Create datasets with the available corrected data\n", + " for field_name, field_data in {\n", + " \"adc\": data_stored,\n", + " \"gain\": gain_stored,\n", + " }.items():\n", + " outp_source.create_key(\n", + " f\"data.{field_name}\", data=field_data,\n", + " chunks=((chunk_size_idim,) + data_corr.shape[1:])\n", + " )\n", + "\n", + " # For GH2 25um, the data of the second receiver is\n", + " # stored in the corrected file.\n", + " for field in [\"bunchId\", \"memoryCell\", \"frameNumber\", \"timestamp\"]:\n", " outp_source.create_key(\n", " f\"data.{field}\", data=dc[instr_mod_src, f\"data.{field}\"].ndarray(),\n", " chunks=(chunks_data, data_corr.shape[1])\n", " )\n", - " outp_source.create_compressed_key(f\"data.mask\", data=mask)\n", - "\n", - " step_timer.done_step(\"Storing data\")" + " outp_source.create_compressed_key(f\"data.mask\", data=mask)\n", + " step_timer.done_step(\"Storing data\")\n", + "\n" ] }, { @@ -430,6 +465,16 @@ "step_timer.print_summary()" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "7f366352", + "metadata": {}, + "outputs": [], + "source": [ + "corr_data_source = f\"{karabo_id}/DET/{corr_karabo_da}:daqOutput\"" + ] + }, { "cell_type": "code", "execution_count": null, @@ -454,16 +499,26 @@ "mod_dcs = {}\n", "first_seq_raw = seq_files[0]\n", "first_seq_corr = out_folder / first_seq_raw.name.replace(\"RAW\", \"CORR\")\n", - "for mod in karabo_da:\n", - " mod_dcs[mod] = {}\n", - " with H5File(first_seq_corr) as out_dc:\n", - " tid, mod_dcs[mod][\"train_corr_data\"] = next(\n", - " out_dc[instr_mod_src, \"data.adc\"].trains()\n", - " )\n", + "mod_dcs[corr_data_source] = {}\n", + "with H5File(first_seq_corr) as out_dc:\n", + " print(out_dc.all_sources)\n", + " tid, mod_dcs[corr_data_source][\"train_corr_data\"] = next(\n", + " out_dc[corr_data_source, \"data.adc\"].trains()\n", + " )\n", + "\n", + "if gh2_detector == \"25um\":\n", + " mod_dcs[corr_data_source][\"train_raw_data\"] = np.zeros((data_corr.shape[1], 1280 * 2), dtype=np.float32)\n", + " mod_dcs[corr_data_source][\"train_raw_gain\"] = np.zeros((data_corr.shape[1], 1280 * 2), dtype=np.uint8)\n", + "\n", + "for i, rec_mod in enumerate(receivers):\n", " with H5File(first_seq_raw) as in_dc:\n", - " train_dict = in_dc.train_from_id(tid)[1][instr_mod_src]\n", - " mod_dcs[mod][\"train_raw_data\"] = train_dict[\"data.adc\"]\n", - " mod_dcs[mod][\"train_raw_gain\"] = train_dict[\"data.gain\"]" + " train_dict = in_dc.train_from_id(tid)[1][rec_mod]\n", + " if gh2_detector == \"25um\":\n", + " mod_dcs[corr_data_source][\"train_raw_data\"][..., i::2] = train_dict[\"data.adc\"]\n", + " mod_dcs[corr_data_source][\"train_raw_gain\"][..., i::2] = train_dict[\"data.gain\"]\n", + " else:\n", + " mod_dcs[corr_data_source][\"train_raw_data\"] = train_dict[\"data.adc\"]\n", + " mod_dcs[corr_data_source][\"train_raw_gain\"] = train_dict[\"data.gain\"]" ] }, { @@ -477,27 +532,26 @@ "display(Markdown(f\"Train: {tid}\"))\n", "\n", "step_timer.start()\n", - "for mod, pdu in zip(karabo_da, db_modules):\n", "\n", - " fig, ax = plt.subplots(figsize=(20, 10))\n", - " raw_data = mod_dcs[mod][\"train_raw_data\"]\n", - " im = ax.plot(np.mean(raw_data, axis=0))\n", - " ax.set_title(f\"RAW module {mod} ({pdu})\")\n", - " ax.set_xlabel(\"Strip #\", size=20)\n", - " ax.set_ylabel(\"12-bit ADC output\", size=20)\n", - " plt.xticks(fontsize=20)\n", - " plt.yticks(fontsize=20)\n", - " pass\n", - "\n", - " fig, ax = plt.subplots(figsize=(20, 10))\n", - " corr_data = mod_dcs[mod][\"train_corr_data\"]\n", - " im = ax.plot(np.mean(corr_data, axis=0))\n", - " ax.set_title(f\"CORRECTED module {mod} ({pdu})\")\n", - " ax.set_xlabel(\"Strip #\", size=20)\n", - " ax.set_ylabel(\"10-bit KeV. output\", size=20)\n", - " plt.xticks(fontsize=20)\n", - " plt.yticks(fontsize=20)\n", - " pass\n", + "fig, ax = plt.subplots(figsize=(20, 10))\n", + "raw_data = mod_dcs[corr_data_source][\"train_raw_data\"]\n", + "im = ax.plot(np.mean(raw_data, axis=0))\n", + "ax.set_title(f\"RAW module {receivers} ({db_modules})\")\n", + "ax.set_xlabel(\"Strip #\", size=20)\n", + "ax.set_ylabel(\"12-bit ADC output\", size=20)\n", + "plt.xticks(fontsize=20)\n", + "plt.yticks(fontsize=20)\n", + "pass\n", + "\n", + "fig, ax = plt.subplots(figsize=(20, 10))\n", + "corr_data = mod_dcs[corr_data_source][\"train_corr_data\"]\n", + "im = ax.plot(np.mean(corr_data, axis=0))\n", + "ax.set_title(f\"CORRECTED module {receivers} ({db_modules})\")\n", + "ax.set_xlabel(\"Strip #\", size=20)\n", + "ax.set_ylabel(\"10-bit KeV. output\", size=20)\n", + "plt.xticks(fontsize=20)\n", + "plt.yticks(fontsize=20)\n", + "pass\n", "step_timer.done_step(\"Plotting mean data\")" ] }, @@ -511,21 +565,20 @@ "display(Markdown(f\"### RAW and CORRECTED strips across pulses for train {tid}\"))\n", "\n", "step_timer.start()\n", - "for mod, pdu in zip(karabo_da, db_modules):\n", - " for plt_data, dname in zip(\n", - " [\"train_raw_data\", \"train_corr_data\"], [\"RAW\", \"CORRECTED\"]\n", - " ):\n", - " fig, ax = plt.subplots(figsize=(15, 20))\n", - " plt.rcParams.update({\"font.size\": 20})\n", - "\n", - " heatmapPlot(\n", - " mod_dcs[mod][plt_data],\n", - " y_label=\"Pulses\",\n", - " x_label=\"Strips\",\n", - " title=f\"{dname} module {mod} ({pdu})\",\n", - " use_axis=ax,\n", - " )\n", - " pass\n", + "for plt_data, dname in zip(\n", + " [\"train_raw_data\", \"train_corr_data\"], [\"RAW\", \"CORRECTED\"]\n", + "):\n", + " fig, ax = plt.subplots(figsize=(15, 20))\n", + " plt.rcParams.update({\"font.size\": 20})\n", + "\n", + " heatmapPlot(\n", + " mod_dcs[corr_data_source][plt_data],\n", + " y_label=\"Pulses\",\n", + " x_label=\"Strips\",\n", + " title=f\"{dname} module {receivers} ({db_modules})\",\n", + " use_axis=ax,\n", + " )\n", + " pass\n", "step_timer.done_step(\"Plotting RAW and CORRECTED data for one train\")" ] }, @@ -603,9 +656,9 @@ ], "metadata": { "kernelspec": { - "display_name": "cal4_venv", + "display_name": ".cal_venv", "language": "python", - "name": "cal4_venv" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -618,11 +671,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.11" - }, - "vscode": { - "interpreter": { - "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1" - } } }, "nbformat": 4,