diff --git a/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb b/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb
index 134e7e0bb729e7faf6c1509ea6d65c46156709d2..b455ca34d83b62c720521b93b351e917df945f6a 100644
--- a/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb
+++ b/notebooks/Gotthard2/Correction_Gotthard2_NBC.ipynb
@@ -112,7 +112,6 @@
     "if not karabo_id_control:\n",
     "    karabo_id_control = karabo_id\n",
     "\n",
-    "instrument_src = instrument_source_template.format(karabo_id, receiver_template)\n",
     "ctrl_src = ctrl_source_template.format(karabo_id_control, control_template)\n",
     "\n",
     "print(f\"Process modules: {karabo_da} for run {run}\")\n",
@@ -160,6 +159,22 @@
     "step_timer = StepTimer()"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7bf7fb32",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "run_dc = RunDirectory(run_folder)\n",
+    "\n",
+    "# Decide if we are processing 2 25um or 1 50um Gotthard-II\n",
+    "\n",
+    "receivers = list(run_dc.select(f'{karabo_id}/DET/{receiver_template}*').all_sources)\n",
+    "\n",
+    "corr_karabo_da = receivers[0].split(\"/\")[-1].split(\":\")[0][:-2]"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -168,7 +183,6 @@
    "outputs": [],
    "source": [
     "# Read slow data\n",
-    "run_dc = RunDirectory(run_folder)\n",
     "g2ctrl = gotthard2lib.Gotthard2Ctrl(run_dc=run_dc, ctrl_src=ctrl_src)\n",
     "\n",
     "if bias_voltage == -1:\n",
@@ -186,7 +200,13 @@
     "print(\"Exposure Time:\", exposure_time)\n",
     "print(\"Exposure Period:\", exposure_period)\n",
     "print(\"Acquisition Rate:\", acquisition_rate)\n",
-    "print(\"Single Photon:\", single_photon)"
+    "print(\"Single Photon:\", single_photon)\n",
+    "\n",
+    "# Decide if GH2 is 25um or 50um\n",
+    "gh2_hostname = run_dc.get_run_value(ctrl_src, \"rxHostname\")\n",
+    "# gh2_hostname is a vector of bytes objects.\n",
+    "# GH2 25um has two hostnames unlike 50um which has one.\n",
+    "gh2_detector = \"25um\" if gh2_hostname[1].decode(\"utf-8\") else \"50um\""
    ]
   },
   {
@@ -229,7 +249,7 @@
     "    db_modules = [None] * len(karabo_da)\n",
     "\n",
     "if constants_file:\n",
-    "    for mod in karabo_da:\n",
+    "    for mod in receivers:\n",
     "        const_data[mod] = dict()\n",
     "        # load constants temporarily using defined local paths.\n",
     "        with h5py.File(constants_file, \"r\") as cfile:\n",
@@ -327,9 +347,9 @@
     "        data_corr[index, ...],\n",
     "        mask[index, ...],\n",
     "        g,\n",
-    "        const_data[mod][\"OffsetGotthard2\"],\n",
-    "        const_data[mod][\"RelativeGainGotthard2\"],  \n",
-    "        const_data[mod][\"Mask\"],\n",
+    "        const_data[rec_mod][\"OffsetGotthard2\"],\n",
+    "        const_data[rec_mod][\"RelativeGainGotthard2\"],  \n",
+    "        const_data[rec_mod][\"Mask\"],\n",
     "        apply_offset=offset_correction,\n",
     "        apply_gain=gain_correction,\n",
     "    )"
@@ -342,22 +362,29 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "for mod in karabo_da:\n",
-    "    # This is used in case receiver template consists of\n",
-    "    # karabo data aggregator index. e.g. detector at DETLAB\n",
-    "    instr_mod_src = instrument_src.format(mod[-2:])\n",
-    "    data_path = \"INSTRUMENT/\" + instr_mod_src + \"/data\"\n",
-    "    for raw_file in seq_files:\n",
-    "        step_timer.start()\n",
+    "for raw_file in seq_files:\n",
     "\n",
-    "        dc = H5File(raw_file)\n",
-    "        out_file = out_folder / raw_file.name.replace(\"RAW\", \"CORR\")\n",
+    "    out_file = out_folder / raw_file.name.replace(\"RAW\", \"CORR\")\n",
+    "    # Select module INSTRUMENT sources and deselect empty trains.\n",
+    "    dc = H5File(raw_file).select(receivers, require_all=True)\n",
     "\n",
-    "        # Select module INSTRUMENT source and deselect empty trains.\n",
-    "        dc = dc.select(instr_mod_src, require_all=True)\n",
-    "        data = dc[instr_mod_src, \"data.adc\"].ndarray()\n",
-    "        gain = dc[instr_mod_src, \"data.gain\"].ndarray()\n",
-    "        step_timer.done_step(\"preparing raw data\")\n",
+    "    n_trains = len(dc.train_ids)\n",
+    "\n",
+    "    # Initialize GH2 data and gain arrays to store in corrected files.\n",
+    "    if gh2_detector == \"25um\":\n",
+    "        data_stored = np.zeros((dc[receivers[0], \"data.adc\"].shape[:2] + (1280 * 2,)), dtype=np.float32)\n",
+    "        gain_stored = np.zeros((dc[receivers[0], \"data.adc\"].shape[:2] + (1280 * 2,)), dtype=np.uint8)\n",
+    "    else:\n",
+    "        data_stored = None\n",
+    "        gain_stored = None\n",
+    "\n",
+    "    for i, rec_mod in enumerate(receivers):\n",
+    "        step_timer.start()\n",
+    "        print(f\"Correcting {rec_mod} for {raw_file}\")\n",
+    "\n",
+    "        data = dc[rec_mod, \"data.adc\"].ndarray()\n",
+    "        gain = dc[rec_mod, \"data.gain\"].ndarray()\n",
+    "        step_timer.done_step(\"Preparing raw data\")\n",
     "        dshape = data.shape\n",
     "\n",
     "        step_timer.start()\n",
@@ -366,7 +393,7 @@
     "        data_corr = context.alloc(shape=dshape, dtype=np.float32)\n",
     "        mask = context.alloc(shape=dshape, dtype=np.uint32)\n",
     "        context.map(correct_train, data)\n",
-    "        step_timer.done_step(\"Correcting one sequence file\")\n",
+    "        step_timer.done_step(f\"Correcting one receiver in one sequence file\")\n",
     "\n",
     "        step_timer.start()\n",
     "\n",
@@ -375,48 +402,56 @@
     "        data_corr[np.isinf(data_corr)] = np.nan\n",
     "\n",
     "        # Create CORR files and add corrected data sections.\n",
-    "        image_counts = dc[instrument_src, \"data.adc\"].data_counts(labelled=False)\n",
-    "\n",
-    "        with DataFile(out_file, \"w\") as ofile:\n",
-    "            # Create INDEX datasets.\n",
-    "            ofile.create_index(dc.train_ids, from_file=dc.files[0])\n",
-    "            # Create METDATA datasets\n",
-    "            ofile.create_metadata(\n",
-    "                like=dc,\n",
-    "                sequence=dc.run_metadata()[\"sequenceNumber\"],\n",
-    "                instrument_channels=(f\"{instrument_src}/data\",)\n",
-    "            )\n",
+    "        image_counts = dc[rec_mod, \"data.adc\"].data_counts(labelled=False)\n",
+    "\n",
+    "        if gh2_detector == \"25um\":\n",
+    "            data_stored[..., i::2] = data_corr.copy()\n",
+    "            gain_stored[..., i::2] = gain.copy()\n",
+    "        else:  # \"50um\"\n",
+    "            data_stored = data_corr\n",
+    "            gain_stored = gain\n",
+    "\n",
+    "    with DataFile(out_file, \"w\") as ofile:\n",
+    "        # Create INDEX datasets.\n",
+    "        ofile.create_index(dc.train_ids, from_file=dc.files[0])\n",
+    "        ofile.create_metadata(\n",
+    "            like=dc,\n",
+    "            sequence=dc.run_metadata()[\"sequenceNumber\"],\n",
+    "            instrument_channels=(f\"{instrument_src}/data\",)\n",
+    "        )\n",
     "\n",
-    "            # Create Instrument section to later add corrected datasets.\n",
-    "            outp_source = ofile.create_instrument_source(instrument_src)\n",
+    "        # Create Instrument section to later add corrected datasets.\n",
+    "        outp_source = ofile.create_instrument_source(f\"{karabo_id}/DET/{corr_karabo_da}:daqOutput\")\n",
     "\n",
-    "            # Create count/first datasets at INDEX source.\n",
-    "            outp_source.create_index(data=image_counts)\n",
+    "        # Create count/first datasets at INDEX source.\n",
+    "        outp_source.create_index(data=image_counts)\n",
     "\n",
-    "            # Store uncorrected trainId in the corrected file.\n",
-    "            outp_source.create_key(\n",
-    "                    f\"data.trainId\", data=dc.train_ids,\n",
-    "                    chunks=min(50, len(dc.train_ids))\n",
-    "                )\n",
-    "\n",
-    "            # Create datasets with the available corrected data\n",
-    "            for field_name, field_data in {\n",
-    "                \"adc\": data_corr,\n",
-    "                \"gain\": gain,\n",
-    "            }.items():\n",
-    "                outp_source.create_key(\n",
-    "                    f\"data.{field_name}\", data=field_data,\n",
-    "                    chunks=((chunks_data,) + data_corr.shape[1:])\n",
+    "        # Store uncorrected trainId in the corrected file.\n",
+    "        outp_source.create_key(\n",
+    "                f\"data.trainId\", data=dc.train_ids,\n",
+    "                chunks=min(50, len(dc.train_ids))\n",
     "            )\n",
     "\n",
-    "            for field in [\"bunchId\", \"memoryCell\", \"frameNumber\", \"timestamp\"]:\n",
+    "        # Create datasets with the available corrected data\n",
+    "        for field_name, field_data in {\n",
+    "            \"adc\": data_stored,\n",
+    "            \"gain\": gain_stored,\n",
+    "        }.items():\n",
+    "            outp_source.create_key(\n",
+    "                f\"data.{field_name}\", data=field_data,\n",
+    "                chunks=((chunk_size_idim,) + data_corr.shape[1:])\n",
+    "        )\n",
+    "\n",
+    "        # For GH2 25um, the data of the second receiver is\n",
+    "        # stored in the corrected file.\n",
+    "        for field in [\"bunchId\", \"memoryCell\", \"frameNumber\", \"timestamp\"]:\n",
     "                outp_source.create_key(\n",
     "                    f\"data.{field}\", data=dc[instr_mod_src, f\"data.{field}\"].ndarray(),\n",
     "                    chunks=(chunks_data, data_corr.shape[1])\n",
     "            )\n",
-    "            outp_source.create_compressed_key(f\"data.mask\", data=mask)\n",
-    "\n",
-    "        step_timer.done_step(\"Storing data\")"
+    "        outp_source.create_compressed_key(f\"data.mask\", data=mask)\n",
+    "        step_timer.done_step(\"Storing data\")\n",
+    "\n"
    ]
   },
   {
@@ -430,6 +465,16 @@
     "step_timer.print_summary()"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7f366352",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "corr_data_source = f\"{karabo_id}/DET/{corr_karabo_da}:daqOutput\""
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -454,16 +499,26 @@
     "mod_dcs = {}\n",
     "first_seq_raw = seq_files[0]\n",
     "first_seq_corr = out_folder / first_seq_raw.name.replace(\"RAW\", \"CORR\")\n",
-    "for mod in karabo_da:\n",
-    "    mod_dcs[mod] = {}\n",
-    "    with H5File(first_seq_corr) as out_dc:\n",
-    "        tid, mod_dcs[mod][\"train_corr_data\"] = next(\n",
-    "            out_dc[instr_mod_src, \"data.adc\"].trains()\n",
-    "        )\n",
+    "mod_dcs[corr_data_source] = {}\n",
+    "with H5File(first_seq_corr) as out_dc:\n",
+    "    print(out_dc.all_sources)\n",
+    "    tid, mod_dcs[corr_data_source][\"train_corr_data\"] = next(\n",
+    "        out_dc[corr_data_source, \"data.adc\"].trains()\n",
+    "    )\n",
+    "\n",
+    "if gh2_detector == \"25um\":\n",
+    "    mod_dcs[corr_data_source][\"train_raw_data\"] = np.zeros((data_corr.shape[1], 1280 * 2), dtype=np.float32)\n",
+    "    mod_dcs[corr_data_source][\"train_raw_gain\"] = np.zeros((data_corr.shape[1], 1280 * 2), dtype=np.uint8)\n",
+    "\n",
+    "for i, rec_mod in enumerate(receivers):\n",
     "    with H5File(first_seq_raw) as in_dc:\n",
-    "        train_dict = in_dc.train_from_id(tid)[1][instr_mod_src]\n",
-    "        mod_dcs[mod][\"train_raw_data\"] = train_dict[\"data.adc\"]\n",
-    "        mod_dcs[mod][\"train_raw_gain\"] = train_dict[\"data.gain\"]"
+    "        train_dict = in_dc.train_from_id(tid)[1][rec_mod]\n",
+    "        if gh2_detector == \"25um\":\n",
+    "            mod_dcs[corr_data_source][\"train_raw_data\"][..., i::2] = train_dict[\"data.adc\"]\n",
+    "            mod_dcs[corr_data_source][\"train_raw_gain\"][..., i::2] = train_dict[\"data.gain\"]\n",
+    "        else:\n",
+    "            mod_dcs[corr_data_source][\"train_raw_data\"] = train_dict[\"data.adc\"]\n",
+    "            mod_dcs[corr_data_source][\"train_raw_gain\"] = train_dict[\"data.gain\"]"
    ]
   },
   {
@@ -477,27 +532,26 @@
     "display(Markdown(f\"Train: {tid}\"))\n",
     "\n",
     "step_timer.start()\n",
-    "for mod, pdu in zip(karabo_da, db_modules):\n",
     "\n",
-    "    fig, ax = plt.subplots(figsize=(20, 10))\n",
-    "    raw_data = mod_dcs[mod][\"train_raw_data\"]\n",
-    "    im = ax.plot(np.mean(raw_data, axis=0))\n",
-    "    ax.set_title(f\"RAW module {mod} ({pdu})\")\n",
-    "    ax.set_xlabel(\"Strip #\", size=20)\n",
-    "    ax.set_ylabel(\"12-bit ADC output\", size=20)\n",
-    "    plt.xticks(fontsize=20)\n",
-    "    plt.yticks(fontsize=20)\n",
-    "    pass\n",
-    "\n",
-    "    fig, ax = plt.subplots(figsize=(20, 10))\n",
-    "    corr_data = mod_dcs[mod][\"train_corr_data\"]\n",
-    "    im = ax.plot(np.mean(corr_data, axis=0))\n",
-    "    ax.set_title(f\"CORRECTED module {mod} ({pdu})\")\n",
-    "    ax.set_xlabel(\"Strip #\", size=20)\n",
-    "    ax.set_ylabel(\"10-bit KeV. output\", size=20)\n",
-    "    plt.xticks(fontsize=20)\n",
-    "    plt.yticks(fontsize=20)\n",
-    "    pass\n",
+    "fig, ax = plt.subplots(figsize=(20, 10))\n",
+    "raw_data = mod_dcs[corr_data_source][\"train_raw_data\"]\n",
+    "im = ax.plot(np.mean(raw_data, axis=0))\n",
+    "ax.set_title(f\"RAW module {receivers} ({db_modules})\")\n",
+    "ax.set_xlabel(\"Strip #\", size=20)\n",
+    "ax.set_ylabel(\"12-bit ADC output\", size=20)\n",
+    "plt.xticks(fontsize=20)\n",
+    "plt.yticks(fontsize=20)\n",
+    "pass\n",
+    "\n",
+    "fig, ax = plt.subplots(figsize=(20, 10))\n",
+    "corr_data = mod_dcs[corr_data_source][\"train_corr_data\"]\n",
+    "im = ax.plot(np.mean(corr_data, axis=0))\n",
+    "ax.set_title(f\"CORRECTED module {receivers} ({db_modules})\")\n",
+    "ax.set_xlabel(\"Strip #\", size=20)\n",
+    "ax.set_ylabel(\"10-bit KeV. output\", size=20)\n",
+    "plt.xticks(fontsize=20)\n",
+    "plt.yticks(fontsize=20)\n",
+    "pass\n",
     "step_timer.done_step(\"Plotting mean data\")"
    ]
   },
@@ -511,21 +565,20 @@
     "display(Markdown(f\"### RAW and CORRECTED strips across pulses for train {tid}\"))\n",
     "\n",
     "step_timer.start()\n",
-    "for mod, pdu in zip(karabo_da, db_modules):\n",
-    "    for plt_data, dname in zip(\n",
-    "        [\"train_raw_data\", \"train_corr_data\"], [\"RAW\", \"CORRECTED\"]\n",
-    "    ):\n",
-    "        fig, ax = plt.subplots(figsize=(15, 20))\n",
-    "        plt.rcParams.update({\"font.size\": 20})\n",
-    "\n",
-    "        heatmapPlot(\n",
-    "            mod_dcs[mod][plt_data],\n",
-    "            y_label=\"Pulses\",\n",
-    "            x_label=\"Strips\",\n",
-    "            title=f\"{dname} module {mod} ({pdu})\",\n",
-    "            use_axis=ax,\n",
-    "        )\n",
-    "        pass\n",
+    "for plt_data, dname in zip(\n",
+    "    [\"train_raw_data\", \"train_corr_data\"], [\"RAW\", \"CORRECTED\"]\n",
+    "):\n",
+    "    fig, ax = plt.subplots(figsize=(15, 20))\n",
+    "    plt.rcParams.update({\"font.size\": 20})\n",
+    "\n",
+    "    heatmapPlot(\n",
+    "        mod_dcs[corr_data_source][plt_data],\n",
+    "        y_label=\"Pulses\",\n",
+    "        x_label=\"Strips\",\n",
+    "        title=f\"{dname} module {receivers} ({db_modules})\",\n",
+    "        use_axis=ax,\n",
+    "    )\n",
+    "    pass\n",
     "step_timer.done_step(\"Plotting RAW and CORRECTED data for one train\")"
    ]
   },
@@ -603,9 +656,9 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "cal4_venv",
+   "display_name": ".cal_venv",
    "language": "python",
-   "name": "cal4_venv"
+   "name": "python3"
   },
   "language_info": {
    "codemirror_mode": {
@@ -618,11 +671,6 @@
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "version": "3.8.11"
-  },
-  "vscode": {
-   "interpreter": {
-    "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
-   }
   }
  },
  "nbformat": 4,